Conference paper Open Access

Real-time Upper Body Reconstruction and Streaming for Mixed Reality Applications

Dimitrios Laskos; Konstantinos Moustakas

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5072/zenodo.652728</identifier>
      <creatorName>Dimitrios Laskos</creatorName>
      <affiliation>University of Patras</affiliation>
      <creatorName>Konstantinos Moustakas</creatorName>
      <affiliation>University of Patras</affiliation>
    <title>Real-time Upper Body Reconstruction and Streaming for Mixed Reality Applications</title>
    <date dateType="Issued">2020-07-29</date>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5072/zenodo.652727</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;In view of the challenges of real-time 3D reconstruction and transmission, the research on tele-immersion systems has been quite intense. We present an end-to-end, real-time 3D reconstruction system of the human body&amp;rsquo;s upper part in mixed reality applications, implemented with the use of a single depth camera on the capture side, whereas no special setup is required. Our system captures the scene, extracts the user&amp;rsquo;s point cloud and by quantizing it, achieves real-time mesh generation and streaming. This system, together with the appropriate virtual (VR) or augmented (AR) reality equipment, creates a sense of a more direct, face-to-face communication, as if both users were in the same environment.&amp;nbsp;&lt;/p&gt;</description>
    <description descriptionType="Other">© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including  eprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/826299/">826299</awardNumber>
      <awardTitle>Smart, Personalized and Adaptive ICT Solutions for Active, Healthy and Productive Ageing with enhanced Workability</awardTitle>
All versions This version
Views 77
Downloads 77
Data volume 26.6 MB26.6 MB
Unique views 55
Unique downloads 44


Cite as