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1 Theoretical Background

1.1 QCD on a lattice

Quantum Chromodynamics on a hyper-cubic Euclidean space-time lattice of size L3 × T
with lattice spacing a is formally described by the action

S = SG[U ] + a4
∑
x

ψ̄ D[U ] ψ (1)

with SG some suitable discretisation of the the Yang-Mills action F 2
µν/4 [1]. The particular

implementation we are using can be found below in section 4.2 and consists of plaquette
and rectangular shaped Wilson loops with particular coefficients. D is a discretisation of
the Dirac operator, for which Wilson originally proposed [2] to use the so called Wilson
Dirac operator

DW [U ] =
1

2

[
γµ
(
∇µ +∇∗

µ

)
− a∇∗

µ∇µ

]
(2)

with ∇µ and ∇∗
µ the forward and backward gauge covariant difference operators, respec-

tively:

∇µψ(x) =
1

a

[
U(x, x+ aµ̂)ψ(x+ aµ̂)− ψ(x)

]
,

∇∗
µψ(x) =

1

a

[
ψ(x)− U †(x, x− aµ̂)ψ(x− aµ̂)

]
,

(3)

where we denote the SU(3) link variables by Ux,µ. We shall set a ≡ 1 in the following for
convenience. Discretising the theory is by far not a unique procedure. Instead of Wilson’s
original formulation one may equally well chose the Wilson twisted mass formulation and
the corresponding Dirac operator [3]

Dtm = (DW [U ] +m0) 1f + iµqγ5τ
3 (4)
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for a mass degenerate doublet of quarks. We denote by m0 the bare (Wilson) quark mass,
µq is the bare twisted mass parameter, τ i the i-th Pauli matrix and 1f the unit matrix
acting in flavour space (see appendix A for our convention). In the framework of Wilson
twisted mass QCD only flavour doublets of quarks can be simulated, however, the two
quarks do not need to be degenerate in mass. The corresponding mass non-degenerate
flavour doublet reads [4]

Dh(µ̄, ϵ̄) = DW 1f + iµ̄γ5τ
3 − ϵ̄τ 1 . (5)

It has the property
D†

h = τ 1γ5Dhγ5τ
1 .

Note that this notation is not unique. Equivalently – as used in Ref. [5] – one may write

D′
h(µσ, µδ) = DW · 1f + iγ5µστ

1 + µδτ
3 , (6)

which is related to Dh by D′
h = (1 + iτ 2)Dh(1− iτ 2)/2 and (µσ, µδ) → (µ̄,−ϵ̄).

2 Installation and Usage

The software ships with a GNU autoconf environment and a configure script, which will
generate GNU Makefiles to build the programmes. It is supported and recommended to
configure and build the executables in a separate build directory. This also allows to have
several builds with different options from the same source code directory.

2.1 Prerequisites

In order to compile the programmes the LAPACK [6] library (fortran version) needs to be
installed. In addition it must be known which linker options are needed to link against
LAPACK, e.g. -Lpath-to-lapack -llapack -lblas. Also a the latest version (tested is
version 1.2.3) of C-LIME [7] must be available, which is used as a packaging scheme to
read and write gauge configurations and propagators to files.

2.2 Configuring the hmc package

In order to get a simple configuration of the hmc package it is enough to just type

path-to-src-code/configure --with-lime=<path-to-lime> \

--with-lapack=<linker-flags> CC=<mycc> \

F77=<myf77> CFLAGS=<c-compiler flags>

in the build directory. If CC, F77 and CFLGAS are not specified, configure will guess
them.

The code was successfully compiled and run at least on the following platforms: i686
and compatible, x64 and compatible, IBM Regatta systems, IBM Blue Gene/L, IBM Blue
Gene/P, SGI Altix and SGI PC clusters, powerpc clusters.

The configure script accepts certain options to influence the building procedure. One
can get an overview over all supported options with configure --help. There are
enable|disable options switching on and off optional features and with|without switches
usually related to optional packages. In the following we describe the most important of
them (check configure --help for the defaults and more options):
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� --enable-mpi:
This option switches on the support for MPI. On certain platforms it automatically
chooses the correct parallel compiler or searches for a command mpicc in the search
path.

� --enable-p4:
Enable the use of special Pentium4 instruction set and cache management.

� --enable-opteron:
Enable the use of special opteron instruction set and cache management.

� --enable-sse2:
Enable the use of SSE2 instruction set. This is a huge improvement on Pentium4
and equivalent systems.

� --enable-sse3:
Enable the use of SSE3 instruction set. This will give another 20% of speedup when
compared to only SSE2. However, only a few processors are capable of SSE3 so far.

� --enable-gaugecopy:
See section 3.4 for details on this option. It will increase the memory requirement
of the code.

� --enable-halfspinor:
If this option is enabled the Dirac operator using half spinor fields is used. See
sub-section 3.4 for details. If this feature is switched on, also the gauge copy feature
is switched on automatically.

� --with-mpidimension=n:
This option has only effect if the preceding one is switched on. The number of paral-
lel directions can be specified. 1,2,3 and 4 dimensional parallelisation is supported.

� --with-lapack="<linker flags>":
the code requires lapack to be linked. All linker flags necessary to do so must be
specified here. Note, that LIBS="..." works similar.

� --with-limedir=<dir>:
Tells configure where to find the lime package, which is required for the build of the
HMC. It is used for the ILDG file format.

The configure script will guess at the very beginning on which platform the build
is done. In case this fails or a cross compilation must be performed please use the op-
tion --host=HOST. For instance in order to compile for the BG/P one needs to specify
--host=ppc-ibm-bprts --build=ppc64-ibm-linux.

For certain architectures like the Blue Gene systems there are README.arch files in
the top source directory with example configure calls.

2.3 Building and Installing

After successfully configuring the package the code can be build by simply typing make in
the build directory. This will compile the standard executables. Typing make install

will copy these executables into the install directory. The default install directory is
$HOME/bin, which can be influenced e.g. with the --prefix option to configure.
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2.4 Input parameter for main program

The main programs are called hmc tm for the HMC algorithm and invert for even odd
preconditioned inversion. They can be called with

� -f filename:
where filename is the name of the input file to be used. The default name is
hmc.input for hmc tm and invert.input for invert.

� -o name:
name will be used as name for several output files. This files differ by their suffix.
Default for name is output.

� -v :
makes the code a bit more verbose. Unrelated to input parameter DebugLevel.

� -?|-h:
This will produce help output and exit then.

There are several input parameters read from an input file. The parser is contained in
the file gwc/src/bin/read input.l. The file read input.l is converted to read input.c

using flex and defines the following function:

Definition:
int read input(char * conf file)

conf file in string with input file name

The functions returns 0, if no error occurs, 2, if the input file could not be opened. If
no input file could be opened or if there is no value given in the input file for a paramter, de-
fault values are used. All default values can be found in the file gwc/src/bin/default input values.h.
The syntax is mostly keyword = value and keyword must be at the beginning of the line.
Comments starting with # and empty lines are allowed. The order of the lines is not im-
portand as long as every keyword appears only once. If it appears more than once, the
last appearance becomes valid. The parser is case-insensitive.

In the following a list of the currently supported general input paramters:

1. T:
The global time extension of the lattice. Default is 4.

2. L:
The global spatial extension of the lattice. Default is 4.

3. LX:
The global spatial x-extension of the lattice. Default is 4.

4. LY:
The global spatial y-extension of the lattice. Default is 4.

5. LZ:
The global spatial z-extension of the lattice. Default is 4.
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6. NrXProcs:
The number of processors in x-direction in case of two dimensional parallelisation.
This has no effect in case of one dimensional parallelisation. In case of two dimen-
sional parallelisation it must be properly set. The number of processors in time
direction is automatically computed.

7. NrYProcs, NrZProcs:
See NrXProcs.

8. seed:
The seed for the random number generator. Default value is 123456.

9. kappa:
The κ value. Default is 0.12. For the hmc tm application, this must be set to the
physical value! It can have different values in the single monomials, but here we
need the target value.

10. csw:
The value of the clover coefficient csw. Must be larger than zero to have effect. For
the hmc tm application, this must be set to the physical value! It can have different
values in the single monomials, but here we need the target value. If set to larger
than zero it will automatically trigger an additional monomial in the even/odd case
for the trace log of the clover term. Default behaviour is no clover term.

11. 2KappaMu:
Twisted mass parameter (the physical one) for twisted mass action. This is for
internal reasons 2κµ. For the hmc tm application, this must be set to the physical
value! It can have different values in the single monomials, but here we need the
target value.

12. 2KappaMuBar:
The average mass of the heavy doublet multiplied with 2κ. For the hmc tm applica-
tion, this must be set to the physical value! It can have different values in the single
monomials, but here we need the target value.

13. 2KappaEpsBar:
The splitting mass multiplied with 2κ. For the hmc tm application, this must be set
to the physical value! It can have different values in the single monomials, but here
we need the target value.

14. Measurements:
Number of measurements in units of trajectories to be done. Default value is 3. For
the invert programme this counts the number of gauge configurations to invert on.
(See Nsave for the increment in the gauge index!)

15. Nsave:
For hmc tm: save every n-th trajectory the configuration to disk. For the invert

programme it means that every n-th configuration is measured. This was formerly
called Nskip.

For invert: if more than one measurement is performed (see Measurements param-
eter), the gauge index is incremented by Nsave for each new measurement.
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16. InitialStoreCounter:
Start with value to label measurements. Default is 0. Can be also set to readin

which causes to let the code check for a file .nstore counter and reads the initial
value from this file. If it is not existing, the counter will be set to 0.

17. GaugeConfigInputFile:
Name of input file for the gauge field. Default is conf

18. ThetaT|X|Y|Z=x:
This sets the boundary condition angle for the fermion fields in t, x, y or z direction
to θt = πx. Default value is zero. A value of 1 would mean antiperiodic boundary
conditions for the fermion fields.

19. DebugLevel:
If set to a value larger than 0 this causes verbose output:

� DebugLevel = 1: forces, iteration counts and flops are printed out.

� DebugLevel = 2: every iteration step is printed. Chronological Solver gives
details about which routines are called, the same for the monomials. polyno-
mial gets more verbose.

� DebugLevel > 2: all available normal output.

� DebugLevel > 3: all debug output. Involves extra computations, so the code
will be (significantly) slower

20. UseSloppyPrecision:
Use a reduced precision Dirac operator in the MC part of the HMC. Possible values
are yes and no, the latter being the default. This could be possibly used in the
invert code along the lines of hep-lat/0609023 in the future.

21. DisableIOChecks:
Defaults to no, if set to yes, this will disable several checks performed on gauge
configuration input files, such size verification or SciDAC checksum matching. It
will also disable the readback performed with Lemon IO.

22. GaugeConfigRead|WritePrecision:
Read/Write gauge configurations in single (32) or double (64) precision. Default is
64.

23. UseEvenOdd:
Whether or not to use even/odd preconditioning in the invert executable.

24. OMPNumThreads:
Number of OpenMP threads to use per process when compiled with OpenMP sup-
port. On some architectures, the OMP NUM THREADS environment variable needs to
be set to the same value for correct operation. The default is 1.

The following input parameters are invert specific:

1. Indices=n-m:
Compute only components n to m of the quark propagator. n,m must be in [0, 99].
If the start index is not zero the data will be appended to the propagator file, unless
SplittedPropagator is chosen. The program does not take care of the order, the
data is just appended!
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2. UseRelativePrecision:
Possible values yes, no. Indicates whether relative precision is used in the inver-
sions for the force and the acceptance computation. Default is no.

3. GMRESMParameter:
Krylov subspace size m in GMRES(m) and such like iterative solvers. Not yet
working!

4. GMRESDRNrEv:
Number of eigenvalues to be deflated in GMRES-DR iterative solver. Not yet work-
ing!

5. ReadSource:
If set to yes, then the source vector is read from a file.

6. SourceTimeSlice:
The time slice of the source to be read. At the moment used only for the automatic
construction of filenames. The filename will then be constructed as basefilename.nstore.ts.index.
SourceTimeSlice can be also set to detect in order to let the code determine the
appropriate timeslice value. (this might be slow, though, but it is unavoidable if
invert should run more than one gauge in a single run and the timeslice value
changes on a gauge basis.)

It has only effect, if every source is in a separate file (i.e. SourceInfo.splitted is set,
which is the default).

7. SourceFilename and PropagatorFilename:
This sets the basefilename for sources and propagators respectively. The default is
source for both.

8. NoSamples:
in case of stochastic source the number of samples.

9. SourceType:
lets you chose the source type: Volume, Point, TimeSlice, PionTimeSlice,

GenPionTimeSlice are possible here.

10. ComputeEVs:
compute eigenvalues and vectors before inversion in invert. Values can be no, yes
and readin. In the latter case the eigenvalues and vectors are only read from disk,
if possible. In case of yes it is also tried to read them from disk, but they are also
recomputed, to a possibly higher precision.

11. NoEigenvalues:
number of eigenvalues to compute.

12. EigenvaluePrecision:
precision for eigenvalues.

13. ComputeModeNumber:
compute the topological susceptibility using the spectral projectors method. Values
can be yes or no.
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14. ComputeModeNumber:
compute the average number of eigenmodes of the massive hermitian operator
D†

tmDtm +m2 with eigenvalues α ≤M2. The value can be yes and no.

15. MStarSq:
value of the parameter M2

∗ necessary in order to compute the mode number or the
topological susceptibility using the method of the spectral projectors.

16. NoSourcesZ2:
number of Z2 stochastic sources for the spectral projectors method.

17. SourceLocation:
integer indicating the location of the source. The location is computed as SourceLocation
= z+L*y+L*L*x+L*L*L*t.

18. UseStoutSmearing:
Whether or not to stout smear the configuration before inversion.

19. StoutRho and StoutNoIterations:
Stout smearing parameter.

20. WritePropagatorFormat or PropagatorType:
The type in which to store the propagator. There are

� DiracFermion Sink

� DiracFermion Source Sink Pairs

� DiracFermion ScalarSource TwelveSink

� DiracFermion ScalarSource FourSink

available. However, only the first two are implemented so far.

21. ComputeReweightingFactor:
If enabled reweighting factors will be computed corresponding to monomials that
must be specified in the input file as well.

22. NoReweightingSamples:
Number of random samples used per gauge configuration to estimate the reweighting
factor. The default is 10.

The following input parameters are hmc tm specific:

1. ThermalisationSweeps:
As long as the number of trajectories is smaller than this number the acceptance
test will be discarded. This might help to faster equilibrate the system.

2. Startcondition:
The starting condition for a run. Possible values are hot, cold, restart, continue.
Default is cold. Restart uses the seed to reset the random number generator. In
case of continue the programme uses the file .nstore counter to get the informa-
tion about from where to read the gauge and the random number status. If this
file does not exist (its written in the course of the HMC) then the input parameter
described here are used instead.
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3. ReversibilityCheck:
If set to yes the program will perform a check of reversibility violation in the in-
tegrator by integrating back in time. If not yet existing, the program creates a file
return check.data in which it stores the reversibility violation as the difference in
the Hamiltonian, the difference in the gauge fields and the relative difference in the
Hamiltonian.

4. ReversibilityCheckIntervall:
Here one can specify the intervall in terms of trajectories the program should check
the reversibility violation.

Following the CHROMA notation we call every part in the action a monomial. A mono-
mial is added to the action in the input file in the following way:

BeginMonomial TYPE

Option = value

EndMonomial

TYPE can be one of the following

� DET: pseudo fermion representation of the (mass degenerate)

det(Q2(κ) + µ2)

� CLOVERDET: pseudo fermion representation of the (mass degenerate)

det(Q2
sw(κ, csw))

for the clover operator without twisted mass term. This monomial is only available
with even/odd preconditioning right now. It automatically adds another monomial
for the Tr ln part of the clover term.

� DETRATIO: pseudo fermion representation of

det(Q2(κ) + µ2)/ det(Q2(κ2) + µ2
2)

� GAUGE:

β

3

∑
x

c0 4∑
µ,ν=1
1≤µ<ν

{1− ReTr(U1×1
x,µ,ν)} + c1

4∑
µ,ν=1
µ ̸=ν

{1− ReTr(U1×2
x,µ,ν)}

 ,

� NDPOLY: polynomial representation of the (possibly non-degenerate) Wilson twisted
mass doublet

[det(Q̂h(ϵ̄, µ̄)
2)]1/2 ≈ det(R−1)

� NDRAT: rational representation of the (possibly non-degenerate) Wilson twisted mass
doublet

[det(Q̂h(ϵ̄, µ̄)
2)]1/2

with an approximation

R(Q2
nd) =

N∏
i=1

Q2
nd + a2i

Q̂2
h + a2i−1

≈ 1√
Q̂2

h
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� NDRATCOR: correction monomial for approximation errors in the rational approxima-
tion used in NDRAT

det
(
Q̂hR

)
.

� NDCLOVERRAT, NDCLOVERRATCOR: clover versions of NDRAT and NDRATCOR, respec-
tively.

� NDCLOVER: polynomial representation of the (possibly non-degenerate) clover twisted
mass doublet

[det(Qnd(ϵ̄, µ̄)
2), csw]

1/2

� POLY: polynomial approximation (Pn(x) ≈ 1
x
) of the mass degenerate determinant[

det(Pn(Q
2(κ) + µ2))

]−1

� POLYDETRATIO: pseudo fermion representation of (for PHMC + mass precondition)[
det(Pn(Q

2(κ) + µ2))det(Q2(κ2) + µ2
2)
]−1

Each of them has different options:

� DET, CLOVERDET:

– 2KappaMu

� CLOVERDET:

– csw

� DET, CLOVERDET:

– Kappa

– Timescale: the timescale on which to integrate this monomial. Counting starts
from zero up to the total number of timescales minus 1.

– CSGHistory: the maximal number of vectors to store for the chronolical pre-
dictor (for CG and BiCGstab), default 0.

– CSGHistory2: the maximal number of vectors to store for the second chrono-
lical predictor (for BiCGstab only), default 0.

– ForcePrecision: the solver precision used in the force computation

– AcceptancePrecision: the solver precision used in the acceptance and heat-
bath

– MaxSolverIterations: default is 5000

– Solver: the solver to be used, either CG or BiCGstab. Default is CG.

– Name: a name to be assigned to the monomial. The default is DET

� DETRATIO: the same as for DET, but in addition:

– 2KappaMu2

– Kappa2
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– Name: a name to be assigned to the monomial. The default is DETRATIO

� GAUGE:

– Timescale: the timescale on which to integrate this monomial. Counting starts
from zero up to the total number of timescales minus 1.

– Name: a name to be assigned to the monomial. The default is GAUGE.

– beta:
The invers coupling β. Default value is 5.2.

– Type: can be one of Wilson, tlsym, Iwasaki, DBW2, user. For type user
you can specify also the two following options. Default is user here.

– UseRectangleStaples: can be yes or no, indicating whether to use also the
rectangle staples. No corresponds to pure Wilson plaquette. Default is no. Is
effective only for type = user.

– RectangleCoefficient: the value of the parameter c1. The coefficient c0 is
computed from c0 = 1− 8c1. Is effective only for type = user.

There is maximally one instance allowed of this type.

� NDPOLY: switches on the PHMC part for the non-degenerate heavy doublet and lets
you specify the timescale on which to integrate this and the parameters.

– 2KappaMubar: 2κµ̄ the heavy twisted mass

– 2KappaEpsbar: 2κϵ̄ the heavy splitting

– Kappa: the κ value

– Timescale: the timescale on which to integrate this monomial. Counting starts
from zero up to the total number of timescales minus 1.

– Name: a name to be assigned to the monomial. The default is NDPOLY

– ComputeEVFreq: If you want to calculate the eigenvalues every n’th trajectory
then set this parameter to n if you want no eigenvalues set this to 0 during
thermalization you should set this to 1 or 2 to follow the evolution of smallest
and largest eigenvalue to adjust the approximation interval of the polynomial

– ComputeOnlyEVs: Computes only once at the very beginning of the run the
eigenvalues of the heavy split operator and exits.

– StildeMin: lower bound for the approximation interval of the polynomial

– StildeMax: upper bound for the approximation interval of the polynomial

– DegreeOfMDPolynomial: degree of the less precise polynomial P . Must be
identical to the degree used to compute the roots.

– LocNormConst: Constant (local normalisation constant) which is multiplied to
each monomial (of the polynomial Pn).

– RootsFile: File name specifying a file containing the n = Degree roots of the
Polynomial

– PrecisionPtilde: Precision of the more precise polynomial P̃ used in the
heat-bath and the acceptance step of the PHMC.

– PrecisionHfinal:
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So far, there is maximally one instance allowed for this type. This might change in
the future.

� NDRAT: like NDPOLY, but with a rational approximation.

– 2KappaMubar: 2κµ̄ the heavy twisted mass

– 2KappaEpsbar: 2κϵ̄ the heavy splitting

– Kappa: the κ value

– DegreeOfRational: the order N of the rational approximation

– StildeMin: lower bound for the approximation interval of the rational approx-
imation

– StildeMax: upper bound for the approximation interval of the rational ap-
proximation

– Cmin: it is possible to use only pairs of coefficients in the range from [ca, cb] in
order to introduce an frequency splitting. Cmin corresponds to 0 < ca < N ,
where N is the order of the rational approximation. The ordering of the partial
fractions in the rational approximation is such that

µ0 > µ1 > ... > µN−1 ,

and hence ca = N − 1 and cb = N − 1 would generate a rational with only
the smallest and, therefore, most expensive shift (which one would typically
integrate on a coarse timescale). ca = 0 and cb = k < N would correspond to
a rational with the k + 1 largest shifts.

– Cmax: cb ≥ ca, see Cmin.

– ComputeOnlyEVs: Computes only once at the very beginning of the run the
eigenvalues of the heavy split operator and exits.

– ForcePrecision: the CGMMS solver precision used in the force computation

– AcceptancePrecision: the CGMMS solver precision used in the acceptance
and heatbath

– MaxSolverIterations: maximal number of CGMMS solver iterations, default
is 5000.

It is important to realise that if the splitting is used, then every partial fraction
must appear once and only once. Otherwise, the algorithm will not describe the
desired physics! Consequently, also the different NDRAT monomials from the same
rational approximation used for frequency splitting have to have identical order.

� NDRATCOR: correction monomial for approximation errors in the rational approxima-
tion for the heavy doublet. This monomial has no derivative part and it is only used
in the heatbath and acceptance steps.

– 2KappaMubar: 2κµ̄ the heavy twisted mass

– 2KappaEpsbar: 2κϵ̄ the heavy splitting

– Kappa: the κ value

– DegreeOfRational: the order N of the rational approximation. The order
must match the order of the corresponding (splitted) NDRAT monomial(s).
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– StildeMin: lower bound for the approximation interval of the rational approx-
imation

– StildeMax: upper bound for the approximation interval of the rational ap-
proximation

– ComputeOnlyEVs: Computes only once at the very beginning of the run the
eigenvalues of the heavy split operator and exits.

– ForcePrecision: the CGMMS solver precision used in the force computation

– AcceptancePrecision: the CGMMS solver precision used in the acceptance
and heatbath

– MaxSolverIterations: maximal number of CGMMS solver iterations, default
is 5000.

� NDCLOVERRAT, NDCLOVERRATCOR: The same as NDRAT, NDRATCOR, but with the ad-
ditional parameter CSW and only for NDCLOVERRAT

– AddTrLog =yes|no: adds a clover trlog monomial with the parameters of
this monomial. no is default. One needs only one trlog monomial per non-
degenerate doublet, so one needs to take care in case of frequency splitting of
the rational approximation to have this set to yes only once.

� POLY, POLYDETRATIO:

– Degree: Degree of the Polynomial.

– Lmin: Lower bound of approximation interval.

– Lmax: Upper bound of approximation interval.

– LocNormConst: Constant (local normalisation constant) which is multiplied to
each monomial (of the polynomial Pn).

– RootsFile: File name specifying a file containing the n = Degree roots of the
Polynomial

– + Parameters from DET & DETRATIO monomial

There can be arbitrary many POLY monomials. But take into account that there
will be allocated n/2 number of spinor fields for EACH poly monomial. (Maybe
in the future we should think about to share these fields with all POLY/NDPOLY
monomials as there are used only for the computation of the force and have to be
updated before each successive calculation of the force.)
This monomial needs a valid RootsFile and LocNormConst parameter. Both can
be obtained from the oox program in the util/oox subdirectory of the hmc code.
It can be invoked by the command:
$ oox -d <degree> -e <epsilon>

<epsilon> is to be replaced by the ratio Lmin/Lmax.

2.4.1 The Integrator

The Integrator can be specified similar to the monomials:
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BeginIntegrator

Option = value

EndIntegrator

with the following options available:

� Tau: total trajectory length.

� NumberOfTimescales: total number of timescales.

� MonitorForces: setting this to yes enables the computation of the forces per mono-
mial at the beginning of each trajectory.

� IntegrationStepsN = M where N is the timescale (as integer value, counting starts
from zero and goes up to the number of timescales minus 1) and M is the number of
integration steps on that timescale. Note, that the integrators or defined recursively.

� LambdaN = F where N is the timescale and F is a floating point number specifying
the λ value to be used on this timescale in case of the second order minimal norm
integrator (2MN, 2MNPOSITION). The default value is 0.19. Note, that λ = 1/6
is the Sexton-Weingarte scheme.

� TypeN = TYPE: set the type of integrator to be used on timescale N. The following
types available: 2MN, 2MNPOSITION, LEAPFROG

The position versions are not compatible with the velocity versions, thus they must
not be used together.

A timescale must not be empty. Currently the maximal number of timescales is 10 and
there cannot be more than 10 monomials per timescale. But there can be more than one
monomial per timescale.

2.4.2 Chosing the Operator for Inversions

BeginOperator TYPE

Option = value

EndOperator

TYPE can be one of the following

� WILSON: simple Wilson Dirac operator, with options:

– UseEvenOdd

� TMWILSON: Wilson Twisted Mass Dirac operator, with options:

– 2KappaMu

– UseEvenOdd

� CLOVER: Clover Twisted Mass Dirac operator, with options:

– 2KappaMu

– UseEvenOdd
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– CSW

� DBTMWILSON: two flavour mass non-degenerate Wilson Twisted Mass Dirac operator:

– 2KappaMubar

– 2KappaEpsbar

� DBCLOVER: two flavour mass non-degenerate Clover Twisted Mass Dirac operator:

– CSW

– 2KappaMubar

– 2KappaEpsbar

� OVERLAP: overlap operator:

– m

– s

– DegreeOfPolynomial

– NoKernerlEigenvalues

– KernelEigenvaluePrecision

All of them provide the following options available:

� kappa:

� Solver:
Sets the solver to be used. Possible values are among others CG, BiCGstab, CGS,

GMRES, PCG and CGMMS.

� MaxSolverIterations:

� PropagatorPrecision:

� SolverPrecision:

The CGMMS solver can be used to invert the operator for multiple masses at the same
time. To this end a list of masses needs to be provided either as a comma-separated list or
as the filename of a text file which lists one mass per line. The masses must be provided
in the format 2κµn. The normal mass specified for the operator is used as µ0. The masses
must be ordered such that µ0 < µ1 < ... < µn.:

� ExtraMasses = 0.12, 0.14, 0.17, 0.21, 0.30

� ExtraMasses = extra masses.input
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2.4.3 Online Measurements

A number of measurements can be performed online while the hmc is running.

BeginMeasurement TYPE

Option = value

EndMeasurement

where TYPE can be currently one of the following:

� CORRELATORS:

– MaxSolverIterations

this is for zero temperature, so the stochastic source is at fixed t. In addition it
needs an operator defined in the input file, otherwise it will do nothing. (see input
keywords for invert above)

� PIONNORM:

– MaxSolverIterations

this is for finite temperature, the stochastic source is at fixed z.

� POLYAKOVLOOP:

– Directions can be either 0 for time- or 3 for z-direction.

The frequency of measuring all of these can be adjusted with the Option Frequency.

2.4.4 Example Input File

The following is a typical HMC input file:

L=8

T=16

Measurements = 1

Startcondition = hot

2KappaMu = 0.03

kappa = 0.090

2KappaMubar = 1.

2KappaEpsbar = 0.2

#This is a comment

PhmcRecEVInterval = 1

Nsave = 50

ThetaT = 1.

InitialStoreCounter = readin

UseEvenOdd = yes

ReversibilityCheck = no

ReversibilityCheckIntervall = 1
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DebugLevel = 3

BeginMeasurement CORRELATORS

MaxSolverIterations = 1000

Frequency = 1

EndMeasurement

BeginMonomial GAUGE

beta = 3.30

Timescale = 0

Type = tlsym

EndMonomial

BeginMonomial DET

Timescale = 1

2KappaMu = 0.

kappa = 0.125

AcceptancePrecision = 1.e-20

ForcePrecision = 1.e-12

Name = det

solver = cg

CSGHistory = 10

CSGHistory2 = 10

EndMonomial

BeginMonomial DETRATIO

Timescale = 2

2KappaMu = 0.03

2KappaMu2 = 0.1

kappa = 0.125

kappa2 = 0.125

maxiter = 20000

AcceptancePrecision = 1.e-20

ForcePrecision = 1.e-12

Name = detrat

solver = cg

EndMonomial

# this is a NDPOLY monomial

# but commented out

#BeginMonomial NDPOLY

# Timescale = 1

#EndMonomial

BeginIntegrator

Type0 = 2MN

Type1 = 2MN

Type2 = 2MN

IntegrationSteps0 = 1
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IntegrationSteps1 = 2

IntegrationSteps2 = 3

tau = 1.

Lambda0 = 0.19

NumberOfTimescales = 3

EndIntegrator

# for the CORRELATORS online measurement

BeginOperator TMWILSON

2kappaMu = 0.177

kappa = 0.177

UseEvenOdd = yes

Solver = CG

SolverPrecision = 1e-14

MaxSolverIterations = 1000

EndOperator

There are realistic small volume sample input files in the sub-directory sample-input,
which also represent test runs for the code. For the inverter a typical file would look like

L=4

T=4

DebugLevel = 2

InitialStoreCounter = 1

Indices = 0-7

ReadSource = no

Measurements = 1

ThetaT = 1.

UseEvenOdd = no

UseRelativePrecision = yes

SplittedPropagator = yes

PropagatorType = DiracFermion_Source_Sink_Pairs

UseStoutSmearing = no

StoutRho = 0.15

StoutNoIterations = 10

UseSloppyPrecision = yes

# both operators will be inverted for

BeginOperator TMWILSON

Solver = CG

2KappaMu = 0.177

kappa = 0.177

SolverPrecision = 1.e-15

UseEvenOdd = yes

EndOperator

BeginOperator DBTMWILSON

2KappaMubar = 0.177

2KappaEpsbar = 0.190

20



kappa = 0.177

EndOperator

# and for reweighting possibly

BeginMonomial DETRATIO

Timescale = 2

2KappaMu = 0.03

2KappaMu2 = 0.0305

kappa = 0.15

kappa2 = 0.15

maxiter = 20000

AcceptancePrecision = 1.e-20

Name = detrat

solver = cg

EndMonomial

2.4.5 Reread functionality

If you store a file with name hmc.reread in the working directory of a running HMC, the
program will read in this file after the next finished trajectory. Then it will change the
parameters accordingly without the need of restarting the program.

One cannot change from gauge action without rectangle part to gauge action with
rectangle part. If one wants to change µ-, ϵ2- or Ni-parameter one has to give allways
all of them. Otherwise the internal matching does not work and the program will do
nonsense.

The file will be deleted automatically, if it was used. A message will be posted to
standard output and to the file history hmc tm to let you identify the exact point where
the parameters changed.

2.5 Output files

output.data

The file output.data contains lines for each performed trajectory. Each line has entries
with the following meaning:

1. Plaquette value.

2. ∆H

3. exp(−∆H)

4. number of pseudo fermion monomials times two integers. The first is the number
of CG or BiCGstab solveriterations used in the acceptance and heatbath steps, the
second is the number of CG (BiCGstab) iterations used for the force computation.

5. Acceptance (0 is rejected, 1 is accepted).
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6. Time in seconds needed for this trajectory. In case of non MPI this is zero, because
not measured.

7. Value of the rectangle part in the gauge action, if used.

Every new run will append its numbers to an already existing file.

output.para

This file contains the parameters used in this run. Old files will be overwritten.

history hmc tm

This file provides a mapping between the configuration number and its plaquette and
Poliakov loop values. Moreover the simulation parameters are stored there and in case of
a reread the time point can be found there.

return check.data

Contains the reversibility violation measurements, if they are performed.

conf.save

This file is written after each trajectory, if no regular configuration is saved. It contains
the most recent gauge configuration and the status of the random number generator for
a restart of the programme.

onlinemeas.N

Contains the online measurement for trajectory N if this feature is switched on.

2.6 Programme gen sources

The programme gen sources provides an interface to generate stochastic sources for
several different situations. It is able to generate those for the nucleon case (which should
not be used, because point sources are optimal), for mesons in general and for the special
case of the pion only.

The programme offers command line options as follows:

� -h|? a help.

� -L the spatical lattice size

� -T the temporal lattice size

� -o the base filename of the sources (default is source)

� -n the configuration number (default is 0)

� -s the sample number (default is 0)
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� -t the value of the start timeslice (default 0)

� -S the spatial spacing/dilution (default 1)

� -P the temporal spacing/dilution (default T )

� -N produce nucleon sources (default meson sources)

� -p plain output filename (see below)

� -O the special pion only case

� -E extended sources for pion three point functions. Together with -O

� -d write source in double precision (default single)

� -a write all sources in one file rather than 12 (pion only is one file anyhow)

The output filename is generated like base.sampleno.gaugeno.tsno.00 -11, unless -p
is chosen, which would correspond to base.00-11.

The special pion only case corresponds to a single timeslice source without any dilution
in spin or colour or space.

3 Implementation

The general strategy of the tmLQCD package is to provide programs for the main ap-
plications used in lattice QCD with Wilson twisted mass fermions. The code and the
algorithms are designed to be general enough such as to compile and run efficiently on
any modern computer architecture. This is achieved code-wise by using standard C as
programming language and for parallelisation the message passing interface (MPI) stan-
dard version 1.1.

Performance improvements are achieved by providing dedicated code for certain widely
used architectures, like PC’s or the Blue Gene family. Dedicated code is mainly available
for the kernel routine – the application of the Dirac operator, which will be discussed in
detail in section 3.4, and for the communication routines.

The tmLQCD package provides three main applications. The first is an implemen-
tation of the (P)HMC algorithm, the second and the third are executables to invert the
Wilson twisted mass Dirac operator (4) and the non-degenerate Wilson twisted mass
Dirac operator (5), respectively. All three do have a wide range of run-time options,
which can be influenced using an input file. The syntax of the input file is explained in
the documentation which ships with the source code. The relevant input parameters will
be mentioned in the following where appropriate, to ease usage.

We shall firstly discuss the general layout of the three aforementioned applications,
followed by a general discussion of the parallelisation strategy used in all three of them.
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Figure 1: Flowchart for the hmc tm executable

3.1 hmc tm

In figure 1 the programme flow of the hmc tm executable is depicted. In the first block
the input file is parsed and parameters are set accordingly. Then the required memory
is allocated and, depending on the input parameters, data is read from disk in order to
continue a previous run.

The main part of this application is the molecular dynamics update. For a number of
trajectories, which must be specified in the input file, first a heat-bath is performed, then
the integration according to the equations of motion using the integrator as specified in
the input file, and finally the acceptance step.

After each trajectory certain online measurements are performed, such as measuring
the plaquette value. Other online measurements are optional, like measuring the pseudo
scalar correlation function.

3.1.1 command line arguments

The programme offers command line options as follows:

� -h|? prints a help message and exits.

� -f input file name. The default is hmc.input

� -o the prefix of the output filenames. The default is output. The code will generate
or append to two files, output.data and output.para.
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3.1.2 Input / Output

The parameters of each run are read from an input file with default name hmc.input. If
it is missing all parameters will be set to their default values. Any parameter not set in
the input file will also be set to its default value.

During the run the hmc tm program will generate two output files, one called per
default output.data, the other one output.para. Into the latter important parameters
will be written at the beginning of the run.

The file output.data has several columns with the following meanings

1. Plaquette value.

2. ∆H

3. exp(−∆H)

4. number of pseudo fermion monomials times two integers. The first of the two is the
sum of solver iterations needed in the acceptance and heatbath steps, the second is
the sum of iterations needed for the force computation of the whole trajectory.

5. Acceptance (0 or 1).

6. Time in seconds needed for this trajectory.

7. Value of the rectangle part in the gauge action, if used.

Every new run will append its numbers to an already existing file.

In addition, the program will create a file history hmc tm. This file provides a map-
ping between the configuration number and its plaquette and Polyakov loop values. More-
over the simulation parameters are stored there and in case of a reread the time point can
be found there.

After every trajectory the program will save the current configuration in the file
conf.save.

3.2 invert and invert doublet

The two applications invert and invert doublet are very similar. The main difference
is that in invert the one flavour Wilson twisted mass Dirac operator is inverted, whereas
in invert doublet the non-degenerate doublet is inverted.

The main part of the two executables is depicted in figure 2. Each measurement
corresponds to one gauge configuration that is read from disk into memory. For each of
these gauge configurations a number of inversions will be performed.

The sources can be either generated or read in from disk. In the former case the
programme can currently generate point sources at random location in space time. In the
latter case the name of the source file can be specified in the input file.

The relevant Dirac operator is then inverted on each source and the result is stored on
disk. The inversion can be performed with a number of inversion algorithms, such as con-
jugate gradient (CG), BiCGstab, and others [8]. And optionally even/odd preconditioning
as described previously can be used.
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Figure 2: Flowchart for the main part of the invert and invert doublet executables.

3.2.1 command line arguments

The two programmes offer command line options as follows:

� -h|? prints a help message and exits.

� -f input file name. The default is hmc.input

� -o the prefix of the output filenames. The default is output. The code will generate
or append to one file called output.para.

3.2.2 Output

The program will create a file called output.data with information about the parameters
of the run. Of course, also the propagators are stored on disc. The corresponding file
names can be influenced via input parameters. The file format is discussed in some detail
in sub-section 4.

One particularity of the invert doublet program is that the propagators written to
disk correspond to the two flavour Dirac operator of eq. (6), i.e.

D′
h(µσ, µδ) = DW · 1f + iµστ

1 + γ5µδτ
3 ,

essentially for compatibility reasons. For the two flavour components written the first is
the would be strange component and the second one the would be charm one.

3.3 Parallelisation

The whole lattice can be parallelised in up to 4 space-time directions. It is controlled with
configure switches, see section 2.2. The Message Passing Interface (MPI, standard version
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1.1) is used to implement the parallelisation. So for compiling the parallel executables a
working MPI implementation is needed.

Depending on the number of parallelised space-time directions the t-direction, the
t- and x-direction, the t-, x- and y-direction or the t-, x- and y- and z-direction are
parallelised.

The number of processors per space direction must be specified at run time, i.e. in the
input file. The relevant parameters are NrXProcs, NrYProcs and NrZProcs. The number
of processors in time direction is determined by the program automatically. Note that
the extension in any direction must divide by the number of processors in this direction.

In case of even/odd preconditioning further constraints have to be fulfilled: the local
number of lattice sites must be even and the local Lz must be even. Moreover, the local
product Lt × Lx × Ly must be even in case of even/odd preconditioning.
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Figure 3: Boundary exchange in a two dimensional parallel setup. One can see that the
internal boundary is send while the external one is received. The corners need a two step
procedure.

The communication is organised using boundary buffer, as sketched in figure 3. The
MPI setup is contained in the file mpi init.c. The corresponding function must be called
at the beginning of a main program just after the parameters are read in, also in case of
a serial run. In this function also the various MPI Datatypes are constructed needed for
the exchange of the boundary fields. The routines performing the communication for the
various data types are located in files starting with xchange .

The communication is implemented using different types of MPI functions. One im-
plementation uses the MPI Sendrecv function to communicate the data. A second one
uses non-blocking MPI functions and a third one persistent MPI calls. See the MPI
standard for details [9]. On machines with network capable of sending in several direc-
tions in parallel the non-blocking version is the most efficient one. The relevant configure
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switches are --with-nonblockingmpi and --with-persistentmpi, the latter of which is
only available for the Dirac operator with halfspinor fields, see section 3.4.

3.4 Dirac Operator

The Dirac operator is the kernel routine of any lattice QCD application, because its
inverse is needed for the HMC update procedure and also for computing correlation func-
tions. The inversion is usually performed by means of iterative solvers, like the conjugate
gradient algorithm, and hence the repeated application of the Dirac operator to a spinor
field is needed. Thus the optimisation of this routine deserves special attention.

At some space-time point x the application of a Wilson type Dirac operator is mainly
given by

ϕ(x) =(m0 + 4r + iµqγ5)ψ(x)

− 1

2

4∑
µ=1

[
Ux,µ(r + γµ)ψ(x+ aµ̂) + U †

x−aµ̂,µ(r − γµ)ψ(x− aµ̂)
] (7)

where r is the Wilson parameter, which we set to one in the following. The most computer
time consuming part is the next-neighbour interaction part.

For this part it is useful to observe that

(1± γµ)ψ

has only two independent spinor components, the other two follow trivially. So only two
of the components need to be computed, then to be multiplied with the corresponding
gauge field U , and then the other two components are to be reconstructed.

The operation in eq. (7) must be performed for each space-time point x. If the loop
over x is performed such that all elements of ϕ are accessed sequentially (one output
stream), it is clear that the elements in ψ and U cannot be accessed sequentially as well.
This non-sequential access may lead to serious performance degradations due to too many
cache misses, because modern processing units have only a very limited number of input
streams available.

While the ψ field is usually different from one to the next application of the Dirac
operator, the gauge field stays often the same for a large number of applications. This
is for instance so in iterative solvers, where the Dirac operator is applied O(1000) times
with fixed gauge fields. Therefore it is useful to construct a double copy of the original
gauge field sorted such that the elements are accessed exactly in the order needed in the
Dirac operator. For the price of additional memory, with this simple change one can
obtain large performance improvements, depending on the architecture. The double copy
must be updated whenever the gauge field change. This feature is available in the code
at configure time, the relevant switch is --with-gaugecopy.

Above we were assuming that we run sequentially through the resulting spinor field
ϕ. Another possibility is to run sequentially through the source spinor field ψ. Moreover,
one could split up the operation (7) as follows, introducing intermediate result vectors
φ± with only two spinor components per lattice site1. Concentrating on the hopping part

1We thank Peter Boyle for useful discussions on this point.
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only, we would have

φ+(x, µ) = P 4→2
+µ Ux,µ(r + γµ)ψ(x)

φ−(x, µ) = P 4→2
−µ (r − γµ)ψ(x) .

(8)

From φ± we can then reconstruct the resulting spinor field as

ϕ(x) =
∑
µ

P 2→4
+µ φ+(x+ aµ̂, µ)

+
∑
µ

P 2→4
−µ U †

x−aµ̂,µφ
−(x− aµ̂, µ)

(9)

Here we denote with P 4→2
±µ the projection to the two independent spinor components for

1± γµ and with P 2→4
±µ the corresponding reconstruction. The half spinor fields φ± can be

interlaced in memory such that ψ(x) as well as φ±(x) are always accessed sequentially in
memory. The same is possible for the gauge fields, as explained above. So only for ϕ we
cannot avoid strided access. So far we have only introduced extra fields φ±, which need
to be loaded and stored from and to main memory, and divided the Dirac operator into
two steps (8) and (9) which are very balanced with regard to memory bandwidth and
floating point operations.

The advantage of this implementation of the Dirac operator comes in the parallel case.
In step (8) we need only elements of ψ(x), which are locally available on each node. So
this step can be performed without any communication. In between step (8) and (9) one
then needs to communicate part of φ±, however only half the amount is needed compared
to a communication of ψ. After the second step there is then no further communication
needed. Hence, one can reduce the amount of data to be send by a factor of two.

There is yet another performance improvement possible with this form of the Dirac
operator, this time for the price of precision. One can store the intermediate fields φ±

with reduced precision, e.g. in single precision when the regular spinor fields are in double
precision. This will lead to a result with reduced precision, however, in a situation where
this is not important, as for instance in the MD update procedure, it reduces the data
to be communicated by another factor of two. And the required memory bandwidth is
reduced as well. This version of the hopping matrix (currently it is only implemented for
the hopping matrix) is available at configure time with the switch --enable-halfspinor.

The reduced precision version (sloppy precision) is available through the input pa-
rameter UseSloppyPrecision. It will be used in the MD update where appropriate.
Moreover, it is implemented in the CG iterative solver following the ideas outlined in
Ref. [10] for the overlap operator.

The various implementations of the Dirac operator can be found in the file D psi.c and
– as needed for even/odd preconditioning – the hopping matrix in the file Hopping Matrix.c.
There are many different versions of these two routines available, each optimised for a par-
ticular architecture, e.g. for the Blue Gene/P double hummer processor or the streaming
SIMD extensions of modern PC processors (SSE2 and SSE3), see also Ref. [11]. Martin
Lüscher has made available his standard C and SSE/SSE2 Dirac operator [12] under the
GNU General Public License, which are partly included into the tmLQCD package.

3.4.1 Blue Gene Version

The IBM PowerPC 450d processor used on the Blue Gene architecture provides a dual
FPU, which supports a set of SIMD operations working on 32 special registers useful for
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Algorithm 1 φ+ = κU P 4→2
+0 (1 + γ0)ψ

1: // load components of ψ into registers
2: bgl load rs0((*s).s0);
3: bgl load rs1((*s).s1);
4: bgl load rs2((*s).s2);
5: bgl load rs3((*s).s3);
6: // prefetch gauge field for next direction (1 + γ1)
7: prefetch su3(U+1);
8: // do now first P 4→2

+0 (1 + γ0)ψ
9: bgl vector add rs2 to rs0 reg0();

10: bgl vector add rs3 to rs1 reg1();
11: //now multiply both components at once with gauge field U and κ
12: bgl su3 multiply double((*U));
13: bgl vector cmplx mul double(ka0);
14: // store the result
15: bgl store reg0 up((*phi[ix]).s0);
16: bgl store reg1 up((*phi[ix]).s1);

lattice QCD. These operations can be accessed using build in functions of the IBM XLC
compiler. The file bgl.h contains all macros relevant for the Blue Gene version of the
hopping matrix and the Dirac operator.

A small fraction of half spinor version (see above) is given in algorithm 1, which
represents the operation φ+ = κU P 4→2

+0 (1 + γ0)ψ. After loading the components of ψ
into the special registers and prefetching the gauge field for the next direction (in this
case 1 + γ1), P

4→2
+0 (1 + γ0)ψ is performed. It is then important to load the gauge field U

only once from memory to registers and multiply both spinor components in parallel.

Finally the result is multiplied with κ (which inherits also a phase factor due to the
way we implement the boundary conditions, see next sub-section) and stored in memory.

3.4.2 Boundary Conditions

As discussed previously, we allow for arbitrary phase factors in the boundary conditions
of the fermion fields. This is conveniently implemented in the Dirac operator as a phase
factor in the hopping term∑

µ

[
eiθµπ/Lµ Ux,µ(r + γµ)ψ(x+ aµ̂) + e−iθµπ/Lµ U †

x−aµ̂,µ(r − γµ)ψ(x− aµ̂)
]
.

The relevant input parameters are ThetaT, ThetaX, ThetaY, ThetaZ.

3.5 The HMC Update

We assume in the following that the action to be simulated can be written as

S = SG +

Nmonomials∑
i=1

SPFi
,
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Figure 4: Data type monomial and its components

and we call – following the CHROMA notation [13] – each term in this sum a monomial.
We require that there is exactly one gauge monomial SG (which we identify with S0 in
the following) and an arbitrary number of pseudo fermion monomials SPFi

.

As a data type every monomial must known how to compute its contribution to the
initial Hamiltonian H at the beginning of each trajectory in the heat-bath step. Then it
must know how to compute the derivative with respect to the gauge fields for given gauge
field and pseudo fermion field needed for the MD update. And finally there must be a
function to compute its contribution to the final Hamiltonian H′ as used in the acceptance
step.

In addition for each monomial it needs to be known on which timescale it should be
integrated. The corresponding data type is sketched in figure 4. The general definitions
for this data type can be found in the file monomial.c.

There are several sorts of monomials implemented:

� DET: pseudo fermion representation of the (mass degenerate) simple determinant

det(Q2(κ) + µ2)

� DETRATIO: pseudo fermion representation of the determinant ratio

det(Q2(κ) + µ2)/ det(Q2(κ2) + µ2
2)

� NDPOLY: polynomial representation of the (possibly non-degenerate) doublet

[det(Qnd(ϵ̄, µ̄)
2)]1/2 .

� GAUGE:

β

3

∑
x

c0 4∑
µ,ν=1
1≤µ<ν

{1− ReTr(U1×1
x,µ,ν)} + c1

4∑
µ,ν=1
µ ̸=ν

{1− ReTr(U1×2
x,µ,ν)}

 ,
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Algorithm 2 integrate

Require: 0 < nts ≤ Nts, τ > 0
1: ∆τ = τ/noSteps[nts]
2: for i = 0 to noSteps[nts] do
3: if nts == 1 then
4: updateGauge(∆τ)
5: else
6: integrate(nts − 1, ∆τ)
7: end if
8: updateMomenta(∆τ , monomialList[nts])
9: end for

The parameter c1 can be set in the input file and c0 = 1 − 8c1. Note that c1 = 0
corresponds to the Wilson plaquette gauge action.

The corresponding specific functions are defined in the files det monomial.c, detratio monomial.c,
ndpoly monomial.c and gauge monomial.c. Additional monomials can easily be imple-
mented by providing the corresponding functions as discussed above.

The integration scheme is implemented recursively, as exemplified in algorithm 2 for
the leap-frog integration scheme (where we skipped half steps for simlicity). The up-
dateMomenta function simply calls the derivative functions of all monomials that are
integrated on timescale nts and updates the momenta P according to the time step ∆τ .

The recursive scheme for the integration can easily be extended to more involved
integration schemes. The details can be found in the file integrator.c. We have imple-
mented the leap-frog and the second order minimal norm [14] integrations schemes. They
are named in the input file as LEAPFROG and 2MN, respectively. These two can be mixed
on different timescales. In addition we have implemented a position version of the second
order minimal norm integration scheme, denoted by 2MNPOSITION in the input file. The
latter must not be mixed with the former two.

The MD update is summarised in algorithm 3. It computes the initial and final
Hamiltonians and calls in between the integration function with the total number of
timescales Nts and the total trajectory length τ .

3.5.1 Reduced Precision in the MD Update

As shortly discussed previously, as long as the integration in the MD udpate is reversible
and area preserving there is large freedom in choosing the integration scheme, but also the
operator: it is not necessary to use the Dirac operator here, it can be any approximation
to it. This is only useful if the acceptance rate is not strongly affected by such an
approximation.

The code provides two possibilities to adapt the precision of the Dirac operator used
in the MD update: the first is to reduce the precision in the inversions needed for the force
computation. This causes reduced iteration numbers needed for the integration of one
trajectory. The relevant input parameter is ForcePrecision available for each monomial.
The precision needed in the acceptance and/or heatbath step can be adjusted separately
using AcceptancePrecision. It is advisable to have the acceptance precision always close
to machine precision.
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Algorithm 3 MD update

1: H = H′ = 0
2: for i = 0 to Nmonomials do
3: H += monomial[i]→heat-bath-function
4: end for
5: integrate(Nts, τ)
6: for i = 0 to Nmonomials do
7: H′ += monomial[i]→acceptance-function
8: end for
9: accept with probability min{1, exp(−∆H)}

The second possibility for influencing the Dirac operator is given by the reduced
precision Dirac operator described in sub-section 3.4, which is switched on with the
UseSloppyPrecision input parameter. The two possibilities can also be used in par-
allel.

Note that one should always test for reversibility violations as explained in sub-section
3.6.

3.5.2 Chronological Solver

The idea of the chronological solver method (or similar methods [15]) is to optimize the
initial guess for the solution used in the solver. To this end the history of NCSG last
solutions of the equation M2χ = ϕ is saved and then a linear combination of the fields
χi with coefficients ci is used as an initial guess for the next inversion. M stands for the
operator to be inverted and has to be replaced by the different ratios of operators used in
this paper.

The coefficients ci are determined by solving∑
i

χ†
jM

2χici = χ†
jϕ (10)

with respect to the coefficients ci. This is equivalent to minimising the functional that is
minimised by the CG inverter itself.

The downside of this method is that the reversibility violations increase significantly
by one or two orders of magnitude in the Hamiltonian when the CSG is switched on and
all other parameters are kept fixed. Therefore one has to adjust the residues in the solvers,
which increases the number of matrix vector multiplications again. Our experience is that
the methods described in the previous sub-section are more effective in particular in the
context of multiple time scale integration, because the CSG is most effective for small
values of ∆τ .

The input parameters is the CSGHistory parameter available for the relevant mono-
mials. Setting it to zero means no chronological solver, otherwise this parameter specifies
the number of last solutions NCSG to be saved.

3.6 Online Measurements

The HMC program includes the possibility to perform a certain number of measure-
ments after every trajectory online, whether or not the configuration is stored on disk.
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Some of those are performed per default, namely all that are written to the output file
output.data:

1. the plaquette expectation value, defined as:

⟨P ⟩ = 1

6V

4∑
µ,ν=1 1≤µ<ν

ReTr(U1×1
x,µ,ν) ,

where V is the global lattice volume.

2. the rectangle expectation value, defined as:

⟨R⟩ = 1

12V

4∑
µ,ν=1 µ̸=ν

ReTr(U1×2
x,µ,ν)

3. ∆H = H′ −H and exp(−∆H).

See the overview section for details about the output.data file. These observables all
come with no extra computational cost.

Optionally, other online measurements can be performed, which – however – need
in general extra inversions of the Dirac operator. First of all the computation of certain
correlation functions is implemented. They need one extra inversion of the Dirac operator,
as discussed in Ref. [16], using the one-end-trick. Define a stochastic source ξ as follows

lim
R→∞

[ξ∗i ξj] = δij, lim
R→∞

[ξiξj] = 0 . (11)

Here R labels the number of samples and i all other degrees of freedom. Then

[ϕr∗
i ϕ

r
j ]R =M−1∗

ik ·M−1
jk + noise , (12)

if ϕ was computed from
ϕr
j =M−1

jk ξ
r
k .

Having in mind the γ5-hermiticity property of the Wilson and Wilson twisted mass Dirac
propagator Gu,d, i.e.

Gu(x, y) = γ5Gd(y, x)
†γ5

it is clear that eq. (12) can be used to evaluate

Cπ(t) = ⟨Tr[Gu(0, t)γ5Gd(t, 0)γ5]⟩ = ⟨Tr[Gu(0, t)Gu(0, t)
†]⟩

with only one inversion. But, even if the one gamma structure at the source is fixed to
be γ5 due to the γ5-hermiticity trick, we are still free to insert any γ-structure Γ at the
source, i.e. we can evaluate any correlation function of the form

CPΓ(t) = ⟨Tr[Gu(0, t)γ5Gd(t, 0)Γ]⟩ = ⟨Tr[Gu(0, t)Gu(0, t)
†γ5Γ]⟩ .

Useful combinations of correlation functions are ⟨PP ⟩, ⟨PA⟩ and ⟨PV ⟩, with

Pα = χ̄γ5
τα

2
χ , V α

µ = χ̄γµ
τα

2
χ , Aα

µ = χ̄γ5γµ
τα

2
χ

34



From ⟨PP ⟩ one can extract the pseudo scalar mass, and – in the twisted mass case –
the pseudo scalar decay constant. ⟨PA⟩ can be used together with ⟨PP ⟩ to extract the
so called PCAC quark mass and ⟨PV ⟩ to measure the renormalisation constant ZV. For
details we refer the reader to Ref. [16].

These online measurements are controlled with the two following input parameters:
PerformOnlineMeasurements to switch them on or off and to specify the frequency
OnlineMeasurementsFreq. The three correlation functions are saved in files named
onlinemeas.n, where n is the trajectory number. Every file contains five columns, speci-
fying the type, the operator type and the Euclidean time t. The last two columns are the
values of the correlation function itself, C(t) and C(−t), respectively. The type is equal
to 1, 2 or 6 for the ⟨PP ⟩, the ⟨PA⟩ and the ⟨PV ⟩ correlation functions. The operator
type is for online measurements always equal to 1 for local source and sink (no smearing
of any kind), and the time runs from 0 to T/2. Hence, C(−t) = C(T − t). C(−0) and
C(−T/2) are set to zero for convenience.

In addition to correlation functions also the minimal and the maximal eigenvalues of
the (γ5D)2 can be measured.

An online measurement not related to physics, but related to the algorithm are checks
of reversibility violations. The HMC algorithm is exact, if and only if the integration
scheme is reversible. On a computer with finite precision this is only guaranteed up
to machine precision. These violations can be estimated by integrating one trajectory
forward and then backward in Monte Carlo time. The difference δ∆H among the original
Hamiltonian H and the final one H′′ after integrating back can serve as one measure for
those violations, another one is provided by the difference among the original gauge field
U and the final one U ′′

δ∆U =
1

12V

∑
x,µ

∑
i,j

(Ux,µ − U ′′
x,µ)

2
i,j

where we indicate with the δ∆ that this is obtained after integrating a trajectory for-
ward and backward in time. The results for δ∆H and δ∆U are stored in the file
return check.data. The relevant input parameters are ReversibilityCheck and ReversibilityCheckInterval.

3.7 Iterative Solver and Eigensolver

There are several iterative solvers implemented in the tmLQCD package for solving

D χ = ϕ

for χ. The minimal residual (MR), the conjugate gradient (CG), the conjugate gradient
squared (CGS), the generalised minimal residual (GMRES), the generalised conjugate
residual and the stabilised bi-conjugate gradient (BiCGstab). For details regarding these
algorithms we refer to Refs. [8, 17].

For the hmc tm executable only the CG and the BiCGstab solvers are available, while
all the others can be used in the invert executables. Most of them are both available
with and without even/odd preconditioning. For a performance comparison we refer to
Ref. [18, 10].

The stopping criterion is implemented in two ways: the first is an absolute stopping
criterion, i.e. the solver is stopped when the squared norm of the residual vector (depend-
ing on the solver this might be the iterated residual or the real residual) fulfills

∥r∥2 < ϵ2 .
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The second is relative to the source vector, i.e.

∥r∥2

∥ϕ∥2
< ϵ2 .

The value of ϵ2 and the choice of relative or absolute precision can be influenced via input
parameters.

The reduced precision Dirac operator, as discussed in sub-section 3.4, is available for
the CG solver. In the CG solver the full precision Dirac operator is only required at the
beginning of the CG search, because the relative size of the contribution to the resulting
vector decreases with the number of iterations. Thus, as soon as a certain precision
is achieved in the CG algorithm we can switch to the reduced precision Dirac operator
without spoiling the precision of the final result. We switch to the lower precision operator
at a precision of

√
ϵ in the CG search, when aiming for a final precision of ϵ < 1.

The eigensolver used to compute the eigenvalues (and vectors) of (γ5D)2 is the so called
Jacobi-Davidson method [19, 20]. For a discussion for the application of this algorithm
to lattice QCD we refer again to Ref. [18, 10].

All solver related files can be found in the sub-directory solver. Note that there are
a few more solvers implemented which are, however, in an experimental status.

3.8 Stout Smearing

Smearing techniques have become an important tool to reduce ultraviolet fluctuations in
the gauge fields. One of those techniques, coming with the advantage of being usable in
the MD update, is usually called stout smearing [21].

The (n + 1)th level of stout smeared gauge links is obtained iteratively from the nth

level by

U (n+1)
µ (x) = eiQ

(n)
µ (x) U (n)

µ (x).

We refer to the unsmeared (“thin”) gauge field as Uµ ≡ U
(0)
µ . The SU(3) matrices Qµ are

defined via the staples Cµ:

Q(n)
µ (x) =

i

2

[
U (n)
µ (x)C(n)

µ

†
(x)− h.c.

]
− i

6
Tr
[
U (n)
µ (x)C(n)

µ

†
(x)− h.c.

]
,

C(n)
µ =

∑
ν ̸=µ

ρµν

(
U (n)
ν (x)U (n)

µ (x+ ν̂)U (n)
ν

†
(x+ µ̂)

+U (n)
ν

†
(x− ν̂)U (n)

µ (x− ν̂)U (n)
ν (x− ν̂ + µ̂)

)
,

where in general ρµν is the smearing matrix. In the tmLQCD package we have only
implemented isotropic 4-dimensional smearing, i.e., ρµν = ρ.

Currently stout smearing is only implemented for the invert executables. I.e. the
gauge field can be stout smeared at the beginning of an inversion. The input parameters
are UseStoutSmearing, StoutRho and StoutNoIterations.
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TR0 TR1 TR2

input-file sample-hmc0.input sample-hmc2.input sample-hmc3.input
L3 × T 43 × 4 43 × 4 43 × 4
SG Wilson TlSym Iwasaki
β 6.0 3.3 1.95
κ 0.177 0.17 0.163260
2κµq 0.177 0.01 0.002740961
2κµ̄ − 0.1105 −
2κϵ̄ − 0.0935 −
⟨P ⟩ 0.62457(7) 0.53347(17) 0.5951(2)
⟨R⟩ − 0.30393(22) 0.3637(3)

Table 1:

3.9 Random Number Generator

The random number generator used in the code is the one proposed by Martin Lüscher
and usually known under the name RANLUX [22]. A single and double precision imple-
mentation was made available by the author under the GNU General Public License and
can be downloaded [23]. For convenience it is also included in the tmLQCD package.

The source code ships with a number of sample input files. They are located in the
sample-input sub-directory. They are small volume V = 44 test runs designated to
measure for instance the average plaquette values.

Such a testrun can be performed for instance on a scalar machine by typing

./hmc tm -f sample-hmc0.input .

Depending on the environment you are running in, you may need to adjust the input
parameters to match the maximal run-time and so on. The expected average plaquette
values are quoted in table 1 and also in the sample input files.

3.10 Benchmark Executable

Another useful test executable is a benchmark code. It can be build by typing make

benchmark and it will, when run, measure the performance of the Dirac operator. It can
be run in the serial or parallel case. It reads its input from a file benchmark.input and
the relevant input parameters are the following:

L = 4

T = 4

NrXProcs = 2

NrYProcs = 2

NrZProcs = 2

UseEvenOdd = yes

UseSloppyPrecision = no

In case of even/odd preconditioning the performance of the hopping matrix is evaluated,
in case of no even/odd the performance of the Dirac operator. The important part of the
output of the code is as follows
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[...]

(1429 Mflops [64 bit arithmetic])

communication switched off

(2592 Mflops [64 bit arithmetic])

The size of the package is 36864 Byte

The bandwidth is 662.91 + 662.91 MB/sec

The bandwidth is not measured directly but computed from the performance difference
among with and without communication and the package size. In case of a serial run the
output is obviously reduced.

4 File Formats and IO

4.1 Fermion Field File Formats

We note at the beginning, that we do not use a different format for source or sink fermion
fields. They are both stored using the same lime records. The meta-data stored in the
same lime-packed file is supposed to clarify all other things.

4.1.1 Propagators

Here we mainly concentrate on storing propagators (sink). The file can contain only
sources, or both, source and sink. We (plan to) support four different formats

1. (arbitrary number of) sink, no sources

2. (arbitrary number of) source/sink pairs

3. one source, 12 sink

4. one source, 4 sink

This is very similar to the formats in use in parts of the US community. However, they
use XML as a markup language, which we don’t (yet) use.

We adopt the SCIDAC chechsum for gauge and propagator files.

Every source and sink has to be in a seperate lime record. The order in one file for
the four formats mentioned above is supposed to be

1. sink, no sources: -

2. source/sink pairs: first source, then sink

3. one source, 12 sink: first source, then 12 sinks

4. one source, 4 sink: first source, then 4 sinks
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All fermion field files must have a record indicating the type. The record itself is of type
propagator-type and the record has a single entry (ascii string) which can contain one
of

� DiracFermion Sink

� DiracFermion Source Sink Pairs

� DiracFermion ScalarSource TwelveSink

� DiracFermion ScalarSource FourSink

Those strings are also used in the input files of the hmc code for the input parameter
PropagatorType. The binary data corresponding to one Dirac fermion field (source or
sink) is then stored with at least two (three) records. The first is of type
etmc-propagator-format

and should contain the following information:

<?xml version="1.0" encoding="UTF-8"?>

<etmcFormat>

<field>diracFermion</field>

<precision>32</precision>

<flavours>1</flavours>

<lx>4</lx>

<ly>4</ly>

<lz>4</lz>

<lt>4</lt>

</etmcFormat>

The flavours entry must be set to 1 for a one flavour propagator (flavour diagonal case)
and to 2 for a two flavour propagator (flavour non-diagonal 2-flavour operator). In the
former case there follows one record of type scidac-binary-data, which is identical to
the SCIDAC format, containing the fermion field. In the latter case there follow two
of such records, the first of which is the upper flavour. To be precise, lets call the two
flavours s and c. Then we always store the s component first and then the c component.
Any number of other records can be added for convenience.

The first two types are by now supported. In the future the other two might follow.

The indices in the binary data scidac-binary-data are in the following order:

t, z, y, x, s, c ,

where t is the slowest and colour the fastest running index. The binary data is stored big
endian and either in single or in double precision, depending on the precision parameter
in the etmc-propagator-format record.

The γ-matrix convention is the one of the HMC code (see subsection A) and the
operator is normalised to

D =
1

2
[γµ(∇µ +∇∗

µ)− a∇∗
µ∇µ] +m0 + iµγ5τ

3 .

For the non-degenerate case with the two flavour operator the following operator is in-
verted:

Dnd =
1

2
[γµ(∇µ +∇∗

µ)− a∇∗
µ∇µ] +m0 + iµ̄γ5τ1 + ϵ̄τ3
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4.1.2 Source Fields

Source fields are, as mentioned before, stored with the same binary data format. There
are again several types of source files possible:

� DiracFermion Source

� DiracFermion ScalarSource

� DiracFermion FourScalarSource

� DiracFermion TwelveScalarSource

This type is stored in a record called source-type in the lime file. There might be
several sources stored within the same file. We add a format reacord etmc-source-format

looking like

<?xml version="1.0" encoding="UTF-8"?>

<etmcFormat>

<field>diracFermion</field>

<precision>32</precision>

<flavours>1</flavours>

<lx>4</lx>

<ly>4</ly>

<lz>4</lz>

<lt>4</lt>

<spin>4</spin>

<colour>3</colour>

</etmcFormat>

with obvious meaning for every scidac-binary-data record within the lime packed file.
This format record also allows to store a subset of the whole field, e.g. a timeslize.

5 Interfaces to external QCD libraries

5.1 QUDA: A library for QCD on GPUs

The QUDA [24, 25, 26] interface is complementary to tmLQCD’s own CUDA kernels for
computations on the GPU by Florian Burger. So far it is exclusively used for inversions.

5.1.1 Design goals of the interface

The QUDA interface has been designed with the following goals in mind, sorted by pri-
ority:

1. Safety. Naturally, highest priority is given to the correctness of the output of the
interface. This is trivially achieved by always checking the final residual on the CPU
with the default tmLQCD routines.
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2. Ease of use. Within the operator declarations of the input file (between BeginOperator
and EndOperator) a simple flag UseQudaInverter is introduced which, when set
to yes, will let QUDA perform the inversion of that operator. The operators
TMWILSON, WILSON, DBTMWILSON and CLOVER are supported.2

3. Minimality. Minimal changes in the form of #ifdef QUDA precompiler directives to
the tmLQCD code base. The main bulk of the interface lies in a single separate file
quda interface.c (with corresponding header file). In the file operators.c, the
QUDA library is initialized when an operator is initialized which has set UseQudaInverter
= yes. There, the actual call to the inverter is conditionally replaced with a call to
the QUDA interface.

4. Performance. The higher priority of the previous items results in small performance
detriments. In particular:

� tmLQCD’s θ-boundary conditions are not compatible with QUDA’s 8 and 12
parameter reconstruction of the gauge fields (as of QUDA-0.7.0). Therefore
reconstruction/compression is deactivated by default, although it may be ac-
tivated via the input file, see below.

� The gaugefield is transferred each time to the GPU before the inversion starts
in order to ensure not to miss any modifications of the gaugefield.

5.1.2 Installation

If not already installed, you have to install QUDA first. Download the most recent version
from http://lattice.github.io/quda/. Note that QUDA version ≥ 0.7.0 is required
(chiral gamma basis).

QUDA can be installed without any dependencies, consider, e.g., the following minimal
configuration:

cmake \

-DQUDA_DIRAC_STAGGERED=OFF \

-DQUDA_DIRAC_DOMAIN_WALL=OFF \

-DQUDA_DIRAC_WILSON=ON \

-DQUDA_DIRAC_CLOVER=ON \

-DQUDA_DIRAC_TWISTED_MASS=ON \

-DQUDA_DIRAC_TWISTED_CLOVER=ON \

-DQUDA_DIRAC_NDEG_TWISTED_MASS=ON \

-DQUDA_DYNAMIC_CLOVER=ON \

-DQUDA_MPI=ON \

-DQUDA_INTERFACE_MILC=OFF \

-DQUDA_INTERFACE_QDP=ON \

-DQUDA_MULTIGRID=ON \

-DQUDA_GPU_ARCH=sm_37 \

${path_to_quda}

where $CUDADIR and $MPI PATH have to be set appropriately. $QUDADIR is your choice for
the installation directory of QUDA. Note that for Wilson clover quarks, you should set

2DBCLOVER is supported by the interface but not by QUDA as of version 0.7.0.
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-DQUDA DYNAMIC CLOVER=OFF, whereas the opposite is strictly necessary for twisted mass
clover quarks, which means that you will require two QUDA and tmLQCD builds for the
time being if you intend to work with both actions. Note also that if you want to use
QUDA in a scalar build of tmLQCD, you should remove the lines --enable-multi-gpu
and --with-mpi=$MPI PATH in the configuration (and probably you want to replace the
MPI compilers). In order to profit from QUDA’s autotuning functionality, set the en-
vironment variable QUDA RESOURCE PATH to a directory of your choice. Every time that
you update your QUDA installation or change some of the many QUDA environment
variables, the files in the directory will have to be deleted or a new directory chosen. It
is convenient to base the directory dynamically on the head git commit of your QUDA
source tree as well as the value of the QUDA ENABLE GDR environment variable. There may
be other environment variables which make one set of auto-tuning results incompatible
with another.

Once QUDA is installed, a minimal configuration of tmLQCD could look like, e.g.,

./configure CC=mpicc \

--prefix=$TMLQCDDIR \

--with-limedir=$LIMEDIR \

--with-lapack=<linker-flags> \

--enable-mpi \

--with-mpidimension=4 \

CXX=mpiCC \

--with-qudadir=$QUDADIR \

--with-cudadir=${CUDADIR}/lib

Note that a C++ compiler is required for linking against the QUDA library, therefore
set CXX appropriately. $QUDADIR is where you installed QUDA in the previous step and
$CUDADIR is required again for linking.

5.1.3 Usage

Any main program that reads and handles the operator declaration from an input file
can easily be set up to use the QUDA inverter by setting the UseExternalInverter flag
to quda. For example, in the input file for the invert executable, add the flag to the
operator declaration as

BeginOperator TMWILSON

2kappaMu = 0.05

kappa = 0.177

UseEvenOdd = yes

Solver = CG

SolverPrecision = 1e-14

MaxSolverIterations = 1000

UseExternalInverter = quda

EndOperator

and the operator of interest will be inverted using QUDA. The initialization of QUDA
is done automatically within the operator initialization, the QUDA library should be
finalized by a call to endQuda() just before finalizing MPI. When you use the QUDA
interface for work that is being published, don’t forget to cite [24, 25, 26].
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5.1.4 General settings

Some properties of the QUDA interface can be configured via the ExternalInverter

section.

BeginExternalInverter QUDA

FermionBC = [theta, pbc, apbc]

EndExternalInverter

The option FermionBC shown above forces twisted (theta), periodic (pbc) or antiperi-
odic (apbc) temporal quark field boundary conditions. This setting exists because at the
time of writing (2017.12.28), there seems to be a bug or incompatibility in QUDA which
causes (anti-)periodic boundary conditions with gauge compression to produce incorrect
propagators.

5.1.5 QUDA-MG interface

The interface has support for the QUDAMultigrid (MG) solver implementation and allows
a number of parameters to be adjusted in order to tune the MG setup. The defaults for
these parameters follow the recommendations of https://github.com/lattice/quda/
wiki/Multigrid-Solver, which also provides useful hints for further tuning. Although
some of the parameters can be set on a per-level basis, the interface currently only exposes
a single setting for all levels, where appropriate. The K-cycle is used by default and there
is currently no user-exposed option for changing this.

The MG-preconditioned GCR solver is selected as follows:

BeginOperator TMWILSON

2kappaMu = 0.05

kappa = 0.177

UseEvenOdd = yes

Solver = mg

SolverPrecision = 1e-18

MaxSolverIterations = 200

UseExternalInverter = quda

UseSloppyPrecision = single

EndOperator

The MG setup can be tuned using the following parameters in the BeginExternalInverter
QUDA section:

� MGNumberOfLevels: number of levels to be used in the MG, 3 is usually ideal but 2
can be similarly efficient depending on the quark mass (positive integer, default 3)

� MGSetupSolver: solver used for generating null vectors. CG or BiCGstab (default
CG). Usage of BiCGstab may be recommended for Wilson or clover Wilson quarks.

� MGSetupSolverTolerance: relative target residual (unsquared!) during setup phase.
(positive float, default 1 · 10−6)

� MGSetupMaxSolverIterations: maximum number of iterations during setup phase.
(positive integer, default 1000)
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� MGCoarseSolverTolerance: unsquared relative target residual on the coarse grids.
(positive float, default 0.25)

� MGNumberOfVectors: number of null vectors to compute on a per-level basis. (pos-
sible values [24, 32], default 24)

� MGCoarseMaxSolveriterations: maximum number of iterations on coarse grids.
(positive integer, default 75)

� MGEnableSizeThreeBlocks: By default, QUDA has limited support for size 3 ag-
gregates. If set to yes, the automatic blocking algorithm will attempt to use them
for lattice extents divisible by 3 when the local lattice extent at a given level is
smaller than 16 aggregate sites. This requires you to instantiate the necessary block
sizes in QUDA (see comments below). (boolean yes or no, default no)

� MGBlockSizes[X,Y,Z,T]: aggregate sizes on each level. When these are set for
a given lattice dimension, the automatic blocking algorithm for that dimension is
overridden and the specified blockings are forced. When the required aggregate sizes
are not instantiated in QUDA, the setup phase will fail with an informative error
message. (comma-separated list of integers, for a three level solver, for example,
this needs to be specified for the first and second level)

� MGSmootherTolerance: unsquared relative target residual of the smoother on all
levels. (positive float, default 0.25)

� MGSmootherPreIterations: number of smoothing steps before coarse grid correc-
tion. (zero or positive integer, default 0)

� MGSmootherPostIterations: number of smoothing steps after prolongation. (zero
or positive integer, default 4)

� MGOverUnderRelaxationFactor: Over- or under-relaxation factor. (positive float,
default 0.85)

� MGCoarseMuFactor: Scaling factor for twisted mass on a per-level basis, accelerates
convergence and reduces condition numer of coarse grid. From experience it seems
that it’s reasonable to set this > 1.0 only on the coarsest level, but it might also
help on intermediate levels. If running with twisted mass, this should always be set
and tuned for maximum efficiency. (positive float, usually > 1.0, default 8.0 from
the second level upwards).

� MGRunVerify: Check GPU coarse operators against CPU coarse operators and verify
Galerkin projectors during setup phase. This is usually fast enough to always be
performed, although sometimes it seems to fail even though the setup works fine.
(yes or no, default yes)

If no blocking is specified manually, the aggregation parameters are set automatically
as follows:

� A default block size of 4 is attempted if the MPI-partitioned fine or aggregate lattice
extent is larger or equal to 16 lattice sites.
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� If the number of aggregate lattice sites in a given direction is even and smaller than
16, a block size of 2 is used.

� The option MGEnableSizeThreeBlocks can be set to yes. Then, for levels coarser
than the fine grid, extents smaller than 16 and divisible by 3, a block size of 3 will
be used. This will almost certainly require the addition of instantiations of block
sizes to QUDA in the restrictor and transfer operator. (lib/restrictor.cu and
lib/transfer util.cu)

� In all other cases, aggregation is disabled for this direction and level. This includes,
for instance, extents divisible by primes other than 2 or 3.

Note that at the time of writing (2017.12.28), only double-single mixed-precision is
supported for the MG-preconditioned GCR solver and the solve will abort if a double-half
precision solve is attempted.

A typical MG setup might look like this for twisted mass clover quarks:

BeginExternalInverter QUDA

MGNumberOfLevels = 3

MGSetupSolver = cg

MGSetupSolverTolerance = 1e-6

MGSetupMaxSolverIterations = 1000

MGCoarseSolverTolerance = 0.25

MGCoarseSolverIterations = 75

MGSmootherTolerance = 0.25

MGSmootherPreIterations = 2

MGSmootherPostIterations = 4

MGOverUnderRelaxationFactor = 0.85

MGCoarseMuFactor = 1.0, 1.0, 12.0

MGNumberOfVectors = 24, 24, 32

MGRunVerify = yes

MGEnableSizeThreeBlocks = no

EndExternalInverter

Alternatively, a blocking can be specified manually:

BeginExternalInverter QUDA

MGNumberOfLevels = 3

MGBlockSizesX = 4, 3

MGBlockSizesY = 4, 3

MGBlockSizesZ = 6, 4

MGBlockSizesT = 6, 4

MGSetupSolver = cg

MGSetupSolverTolerance = 1e-6

MGSetupMaxSolverIterations = 1000

MGCoarseSolverTolerance = 0.25

MGCoarseSolverIterations = 75

MGSmootherTolerance = 0.25

MGSmootherPreIterations = 2
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MGSmootherPostIterations = 4

MGOverUnderRelaxationFactor = 0.85

MGCoarseMuFactor = 1.0, 1.0, 12.0

MGRunVerify = yes

MGEnableSizeThreeBlocks = no

EndExternalInverter

5.1.6 More advanced settings

To achieve higher performance you may choose single (default) or even half precision
as sloppy precision for the inner solver of the mixed precision inverter with reliable
updates. After BeginOperator and before EndOperator set UseSloppyPrecision =

double|single|half. The MG-preconditioned GCR solver only works in double-single
mixed precision, but the null vectors are stored in half precision as recommended by Kate
Clark.

To activate compression of the gauge fields (in order to save bandwidth and thus
to achieve higher performance), set UseCompression = 8|12|18 within BeginOperator

and EndOperator. The default is 18 which corresponds to no compression. Note that
if you use compression, trivial (anti)periodic boundary conditions will be applied to the
gauge fields, instead of the default θ-boundary conditions. As a consequence, the residual
check on tmLQCD side will fail. Moreover, compression is not applicable when using
general θ-boundary conditions in the spatial directions. If trying to do so, compression
will be de-activated automatically and the user gets informed via the standard output.
The FermionBC setting can be used to force particular temporal boundary conditions to
be applied to the gauge field in the Dirac operator.

5.1.7 Functionality

The QUDA interface can currently be used to invert TMWILSON, WILSON, DBTMWILSON

and CLOVER within a 4D multi-GPU (MPI) parallel environment with CG, BICGSTAB or
MG-preconditioned GCR. QUDA uses even-odd preconditioning, if wanted (UseEvenOdd
= yes), and the interface is set up to use a mixed precision solver by default. For more
details on the QUDA settings check the function initQuda() in quda interface.c.

5.2 DDalphaAMG: A library for multigrid preconditioning on
LQCD

DD-αAMG [27] is an Adaptive Aggregation-based Domain Decomposition Multigrid method
for Lattice QCD. A library named DDalphaAMG is publicly available3 and it contains
the full method with additional development tools. DD-αAMG has been successfully
extended to Nf = 2 twisted mass fermions in [28].

5.2.1 Installation

Download the Twisted Mass version of the DDalphaAMG library at

https://github.com/sbacchio/DDalphaAMG.

3https://github.com/DDalphaAMG/DDalphaAMG
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The Makefile should be ready for being compiled in a Intel environment. You may want
to change the environment or just set some variables; you can do it editing the first lines
of the Makefile:

CC = mpiicc

# --- CFLAGS -----------------------------------------

CFLAGS_gnu = -std=gnu99 -Wall -pedantic -fopenmp -O3 -ffast-math -msse4.2

CFLAGS_intel = -std=gnu99 -Wall -pedantic -qopenmp -O3 -xHOST

CFLAGS = $(CFLAGS_intel)

The library can be installed with

make -j library LIMEDIR="/your/lime/installation/dir"

and tmLQCD can be configured and compiled by using

autoreconf -f

./configure YOUR_OPTIONS --with-DDalphaAMG="/path/to/DDalphaAMG/dir"

make -j

5.2.2 Usage

For calling the solver with a standard setting of parameters, it is just necessary to use
DDalphaAMG as a solver:

BeginOperator TMWILSON

2kappaMu = 0.05

kappa = 0.177

Solver = DDalphaAMG

SolverPrecision = 1e-14

MaxSolverIterations = 100

EndOperator

More options are available and explained in the next section. At the first call of the solver,
a setup phase will be run and then the same setup will be used for all the inversions with
the same configuration. Be aware that the change of configuration at the moment is
supported just for HMC simulations for which specific parameters are defined.

5.2.3 More advanced settings

For tuning purpose, several parameters of DDalphaAMG can be set inside the section
DDalphaAMG and here after the complete list of implemented parameters:

BeginDDalphaAMG

MGOMPNumThreads = 1

MGBlockX = 4

MGBlockY = 4

MGBlockZ = 4

MGBlockT = 4

MGNumberOfVectors = 24
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MGNumberOfLevels = 3

MGCoarseMuFactor = 5

MGSetupIter = 5

MGCoarseSetupIter = 3

MGSetup2KappaMu = 0.001

MGMixedPrecision = yes

MGdtauUpdate = 0.05

MGrhoUpdate = 0.0

MGUpdateSetupIter = 1

EndDDalphaAMG

Not all the parameters have to be use and for all of them a standard value is defined.
Here a brief explanation:

MGOMPNumThreads: the DDalphaAMG library does not take advantages on exploiting
hyper-threading; while most of the applications of tmLQCD do. For this reason the
OMPNumThreads for DDalphaAMG has been separated by the standard one. If this
parameter is not used, the value of OMPNumThreads is used.

MGBlock?: 4 block size in the directions X,Y,Z,T. The values have to divide the local size
of the lattice and by default an optimal value is used.

MGNumberOfVectors: 4 number of vectors used in the fine level. This parameter require
some tuning.

MGNumberOfLevels: number of levels for the multigrid method. Can take values from 1
(no multigrid) to 4. A value of 3 is suggested.

MGCoarseMuFactor: 4 multiplicative factor for the twisted mass term µ on the coarsest
level. A good performance is achieved with a value between 3 and 6.

MGSetupIter, MGCoarseSetupIter: number of setup iterations in the fine and coarse
grid respectively. For the fine grid a value between 3 and 5 is suggested. For the
coarse grid 2, 3 iterations should be enough.

MGSetup2KappaMu: out of the physical point, the solver could have advantages on running
the setup with a lower mu, closer to the physical point.

MGMixedPrecision: using the mixed precision solver, a speed-up of 20% can be achieved.
One has to be careful that the mixed precision solver do not restart more than
once and that the restarted relative residual (in double precision) is not order of
magnitude higher than the one in single precision, see Section 5.2.4. In that case
the mixed precision solver is not suggested.

MGdtauUpdate: for HMC, dτ interval after that the setup is updated. If 0, it will be
updated every time the configuration is changed.

MGrhoUpdate: for HMC, rho value of the monomial at which the setup have to be up-
dated. It can be combined with MGdtauUpdate or used standalone.

4 for a better understanding of these parameters we strongly suggest the reading of the numerical
results presented in [28]
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MGUpdateSetupIter: for HMC, number of setup iterations to do on the fine level when
the setup has to be updated.

MGNumberOfShifts: for MG in multi-shift systems, number of shifted linear systems, N,
to be solved by DDalphaAMG. MG will solve the N smaller shifts.

MGMMSMass: for MG in multi-shift systems, alternative to the previous. MG will solve all
the mass-shifts smaller than the given value.

5.2.4 Output analysis

Running tmLQCD programs with the option -v, the full output of DDalphaAMG is
shown. Here some hints on the informations given. Just before the setup, the full set of
parameters is printed, with an output similar to the following:

+----------------------------------------------------------+

| 3-level method |

| postsmoothing K-cycle |

| FGMRES + red-black multiplicative Schwarz |

| restart length: 10 |

| m0: -0.430229 |

| csw: +1.740000 |

| mu: +0.001200 |

+----------------------------------------------------------+

| preconditioner cycles: 1 |

| inner solver: minimal residual iteration |

| precision: single |

+---------------------- depth 0 --------------------------+

| global lattice: 96 48 48 48 |

| local lattice: 16 8 8 24 |

| block lattice: 4 4 4 4 |

| post smooth iter: 2 |

| smoother inner iter: 4 |

| setup iter: 3 |

| test vectors: 24 |

+---------------------- depth 1 --------------------------+

| global lattice: 24 12 12 12 |

| local lattice: 4 2 2 6 |

| block lattice: 2 2 2 2 |

| post smooth iter: 2 |

| smoother inner iter: 4 |

| setup iter: 3 |

| test vectors: 28 |

+---------------------- depth 2 --------------------------+

| global lattice: 12 6 6 6 |

| local lattice: 2 1 1 3 |

| block lattice: 1 1 1 1 |

| coarge grid solver: odd even GMRES |

| iterations: 25 |

| cycles: 40 |

| tolerance: 5e-02 |

| mu: +0.012000 |
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+----------------------------------------------------------+

| K-cycle length: 5 |

| K-cycle restarts: 2 |

| K-cycle tolerance: 1e-01 |

+----------------------------------------------------------+

You may want to check that all the parameters agree to what expected and a good set of
parameters is presented in [28].

5.2.5 Warnings and error messages

5.3 QPhiX: Optimised kernels and solvers for Intel Processors

The QPhiX [29] interface provides a library of MPI- and OpenMP-parallel linear operators
and solvers for Wilson-type lattice fermions as well as a code-generator for the kernels
employed by these operators. QPhiX has been extended to include all the operators
relevant for tmLQCD, including the non-degenerate operator with and without the clover
term.

5.3.1 Installation

If not already installed, you have to install QPhiX first. At the time of writing, the version
with support for all twisted mass operators is in branch

� devel branch of https://github.com/JeffersonLab/qphix.

It depends on QMP (https://github.com/usqcd-software/qmp), which is built and
installed through the usual configure, make, make install mechanism.

QPhiX is built using CMake and requires the availability of python 3, as well as the
jinja2 library (https://jinja.pocoo.org). The latter can easily be installed via the pip
package installer:

pip install --user jinja

QPhiX AVX2 Compilation: In order to compile QPhiX using GCC on an AVX2
machine, CMake is called in this way:

CXX=mpicxx \

CXXFLAGS="-mavx2 -mtune=core-avx2 -march=core-avx2 -std=c++11 -O3 -fopenmp" \

cmake -Disa=avx2 \

-DQMP_DIR=${QMP_INSTALL_DIR} \

-Dparallel_arch=parscalar \

-Dhost_cxx=g++ \

-Dhost_cxxflags="-std=c++11 -O3" \
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-Dtwisted_mass=TRUE \

-Dtm_clover=TRUE \

-Dclover=TRUE \

-Dtesting=FALSE \

-DCMAKE_INSTALL_PREFIX=${QPHIX_INSTALL_DIR} ${QPHIX_SRC_DIR}

where QMP INSTALL DIR, QPHIX INSTALL DIR and QPHIX SRC DIR should be replaced
with the QMP installation directory, the target installation directory for QPhiX and the
QPhiX source directory respectively.

In the command above:

� -Dtesting=FALSE disables the building of all tests, which would additionally require
QDP++ to be available

� -Dhost cxx and -Dhost cxxflags define the compiler used for building the code
generator executables. This can be any compiler and g++ works just fine for this
purpose.+

QPhiX AVX512 Compilation: On a KNL-based machine like Marconi-KNL in-
stead, the Intel compiler and Intel MPI library should be used:

CXX=mpiicpc \

CXXFLAGS="-xKNL -std=c++11 -O3 -qopenmp" \

CFLAGS="-xKNL -O3 -std=c99 -qopenmp" \

cmake -Disa=avx512 \

-DQMP_DIR==${QMP_INSTALL_DIR} \

-Dparallel_arch=parscalar \

-Dhost_cxx=g++ \

-Dhost_cxxflags="-std=c++11 -O3" \

-Dtwisted_mass=TRUE \

-Dtm_clover=TRUE \

-Dclover=TRUE \

-Dtesting=FALSE \

-DCMAKE_INSTALL_PREFIX=${QPHIX_INSTALL_DIR} ${QPHIX_SRC_DIR}

Note that for Skylake, the correct code for targetting vectorisation is SKYLAKE-AVX512.

tmLQCD AVX512 Compilation: Once QPhiX is built and installed, tmLQCD
can be configured as follows on a KNL AVX512 machine, for example:

$ cd ${TMLQCD_SRC_DIR}

$ autoconf

$ cd ${TMLQCD_BUILD_DIR}
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$ ${TMLQCD_SRC_DIR}/configure \

--host=x86_64-linux-gnu \

--with-limedir=${LIME_INSTALL_DIR} \

--with-lemondir=${LEMON_INSTALL_DIR} \

--with-mpidimension=4 --enable-omp --enable-mpi \

--disable-sse2 --disable-sse3 \

--with-lapack="-Wl,--start-group ${MKLROOT}/lib/intel64/libmkl_intel_lp64.a

${MKLROOT}/lib/intel64/libmkl_core.a

${MKLROOT}/lib/intel64/libmkl_intel_thread.a

-Wl,--end-group -lpthread -lm -ldl" \

--disable-halfspinor --enable-gaugecopy \

--enable-alignment=64 \

--enable-qphix-soalen=4 \

--with-qphixdir=${QPHIX_INSTALL_DIR} \

--with-qmpdir=${QMP_INSTALL_DIR} \

CC=mpiicc CXX=mpiicpc F77=ifort \

CFLAGS="-O3 -std=c99 -qopenmp -xKNL" \

CXXFLAGS="-O3 -std=c++11 -qopenmp -xKNL" \

LDFLAGS="-qopenmp"

IMPORTANT: On AVX512 machines, for some reason, the half-spinor tmLQCD
operators do not work. This is likely related to MPI and alignment, but we were unable
to resolve it at the time of writing. As a result, --disable-halfspinor is passed when
building on these architectures.

--enable-qphix-soalen=4 sets the QPhiX structure of array (SoA) length, which
defines the size of the innermost direction in the blocked data structures in QPhiX. Half
the local lattice extent in X direction, Lx/2, has to be divisible by this number. Setting
this equal to the double-precision SIMD length on a given architecture means that a
full double-precision SIMD vector can be loaded in a single instruction, while values
below the SIMD vector length will result in multiple load and store instructions, while all
computation are always carried out on full vectors.

For now, the same SoA length is used for all supported arithmetic precisions as this
facilitates thinking about possible parallelisation strategies. On AVX512 machines, a
setting this to 8 is optimal whereas 4 is recommended for AVX2.

Note that compiling for KNL requires cross-compilation (if not on a KNL build node),
but it seems to be sufficient to specify --host=x86 64-linux-gnu for all test programs
to compile correctly during the configuration stage.

The QPhiX interface can be combined with DDαAMG without problems, but building
together with the QUDA interface is only possible using GCC or clang, since QUDA is not
compatible with the Intel compiler. On the QPhiX side, this will result in a potentially
significant reduction of performance.

5.3.2 Usage

QPhiX global parameters: The blocking and threading parameters for QPhiX are
passed by adding the following section to the tmLQCD input file:
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BeginExternalInverter QPHIX

# physical cores per MPI task

NCores = 34

# block sizes (see qphix papers for details)

By = 8

Bz = 8

# split the processing of time slices into this many

# independent blocks

MinCt = 1

# (hyper-)thread geometry per core

# ompnumthreads = NCores * Sy * Sz

# if only a single thread per core is launched

# these should both be left as ’1’

Sy = 1

Sz = 2

# paddings in XY and XYZ blocks

PadXY = 1

PadXYZ = 0

EndExternalInverter

� NCores: number of physical cores per MPI task. On KNL, it might even make sense
to specify twice the number of physical cores since each core contains two vector
processing units (VPUs). Another possiblity would be to specify the number of tiles
per MPI tasks and consider cores and VPUs throuh Sz and Sy below. The only case
that has been tested for performance is to set this equal to the number of physical
cores per MPI task.

� By, Bz: the QPhiX data structures are organised into blocks which can be efficiently
loaded into CPU caches. By and Bz define the size of these blocks in the Y and
Z lattice dimensions. The local lattice extent in the given dimension should be
divisible by the respective block extent. Generally, 4 or 8 are good values and the
larger of the two may be preferable.

� MinCt: Processing of time slices is split into MinCt blocks. This is useful for dual-
socket systems when running with a single MPI task per node. In this case, this
should be set to 2 which will allow the kernels to run in a NUMA-friendly fashion.
The local T dimension must be divisible by this number. On KNL, this should be
set to 1. Note that in all cases tested so far, running with 2 MPI tasks per node on
dual-socket systems was superior.

� Sy, Sz: thread blocking parameters. When multiple threads share resources (this
is the case for cores and hyperthreads on KNL, for example), these parameters make
it possible to consider this in the volume-traversal loops implemented in QPhiX. On
KNL, the only setting which has been tested for performance is to set this equal to
2, given that NCores has been set to the number of physical cores. Sz then splits
the local Z direction among two hyperthreads.
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� PadXY(Z): Adds padding to the QPhiX data structures which may result in higer
overall performance. Only value tested on KNL is PadXY=1 and PadXYZ=0.

IMPORTANT: The global setting OmpNumThreads should be set to NCores * Sy * Sz,
otherwise the QPhiX interface will abort execution.

QPhiX operator / monomial parameters: QPhiX solvers are available in operators
for inversions and monomials for performing HMC with the same parameters. For a clover
determinant, using QPhiX solvers instead of tmLQCD-native ones would be achieved as
follows:

BeginMonomial CLOVERDET

Timescale = 1

kappa = 0.1394267

2KappaMu = 0.00069713350

CSW = 1.69

rho = 0.238419657

MaxSolverIterations = 5000

AcceptancePrecision = 1.e-21

ForcePrecision = 1.e-16

Name = cloverdetlight

Solver = mixedcg

UseExternalInverter = qphix

UseCompression = 12

UseSloppyPrecision = single

EndMonomial

� Solver: specify the solver type (see below for the solvers supported by the QPhiX
interface).

� UseExternalInverter: the external inverter qphix should be used for this mono-
mial.

� UseCompression: gauge compression should be used (12). This improves perfor-
mance by increasing the flop/byte ratio. Twisted boundary conditions are fully
supported in all directions.

� UseSloppyPrecision: for a solver using just a single arithmetic precision (like basic
cg or bicgstab), this sets the arithmetic precision employed. For a mixed-precision
solver such as mixedcg, this sets the arithmetic precision of the inner solver.

Supported solvers: The QPhiX interface provides support for the solvers:

� cg

� mixedcg

� bicgstab
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� mixedbicgstab

� cgmms (single-flavour rational monomials only)

� cgmmsnd (two-flavour non-degenerate rational monomials only)

Note that as usual, bicgstab and mixedbicgstab do not converge for twisted mass
fermions at maximal twist.

Note also that if the solver is any of cg, bicgstab, cgmms or cgmmsnd and UseSloppyPrecision
= single is set, the selected solver will run in single precision arithmetic. Only mixedcg

and mixedbicgstab are mixed precision solvers which use the sloppy precision as the
precision of the inner solver.

5.3.3 Notes about QPhiX performance

� MPI Task and Thread pinning: QPhiX performs best when MPI tasks are
pinned to the resources assigned to them and when threads are bound to individ-
ual cores or hyperthreads. This is conventiently achieved for Intel MPI by tak-
ing control of resource pinning from the job scheduler, setting I MPI PIN=1 and
I MPI PIN DOMAIN=N, where N should be set to a pinning domain appropriate for
the chosen parallelisation. In order to then distribute application threads in an op-
timal fashion across the cores that have been assigned to a given MPI task in this
way, setting KMP AFFINITY="balanced,granularity=fine" is recommended.

– Generally, the size of the pinning domain is the number of hyperthreads per
core supported by the CPU in question, times the number of cores that a
given MPI task should run on. If hyperthreading is disabled on the machine
in question, it is simply the number of cores that each MPI task should be
allocated.

� Halo packing overheads: In QPhiX, communication in the Y and especially in
the X dimension incurs halo packing overheads. These are usually greater than the
gain from having a more balanced surface to bulk ratio. It is thus recommended to
do as little MPI parallelisation as possible in the X dimension and similarly limit it
in the Y dimension, although the latter is less performance-critical.

� OmniPath networking performance: On machines based on Intel Knight’s
Landing or Skylake processors with OmniPath networks, best single node perfor-
mance is generally reached with a single MPI task per node (KNL) or a single MPI
task per socket (Skylake). However, until computing centres have implemented the
recommendations of Ref. [30], more than one or two MPI tasks per node are required
to saturate network bandwidth on these machines. Generally, 4 to 8 MPI tasks per
node seem to work well.
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A γ and Pauli Matrices

In the following we specify our conventions for γ- and Pauli-matrices.

A.1 γ-matrices

We use the following convention for the Dirac γ-matrices:

γ0 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 , γ1 =


0 0 0 −i
0 0 −i 0
0 +i 0 0
+i 0 0 0

 ,

γ2 =


0 0 0 −1
0 0 +1 0
0 +1 0 0
−1 0 0 0

 , γ3 =


0 0 −i 0
0 0 0 +i
+i 0 0 0
0 −i 0 0

 .

In this representation γ5 is diagonal and reads

γ5 =


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

 .

A.2 Pauli-matrices

For the Pauli-matrices acting in flavour space we use the following convention:

1f =

(
1 0
0 1

)
, τ 1 =

(
0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)

B Initialising the PHMC

The function 1/
√
s in the interval [ϵ, 1] can be approximated using polynomials or rational

functions of different sorts. In the tmLQCD package we use Chebysheff polynomials, which
are easy to construct. They can be constructed as to provide a desired overall precision
in the interval [ϵ, 1].

The roots of the polynomial Pn,ϵ are needed for the evaluation of the force. Even
though the roots come in complex conjugate pairs, for our case the roots cannot be
computed analytically, hence we need to determine them numerically. Such an evaluation
requires usually high precision. This is why these roots need to be determined before a
PHMC run using an external program, i.e. they cannot be computed at the beginning of
a run in the hmc tm program.

Such an external program ships with the tmLQCD code, which is located in the
util/laguere directory5. It is based on Laguerre’s method and uses the Class Library
for Numbers (CLN) [31], which provides arbitrary precision data types. In order to
compute roots the CLN library must be available, which is free software.

5We thank Istvan Montvay for providing us with his code.
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Taking for granted that the CLN library is available, the procedure for computing
the roots is as follows: assuming the non-degenerate Dirac operator has eigenvalues in
the interval [s̃min, s̃max], i.e. ϵ = s̃min/s̃max, and the polynomial degree is n. Edit the file
chebyRoot.H and set the variable EPSILON to the value of ϵ. Moreover, set the variable
MAXPOW to the degree n. Adapt the Makefile to your local installation and compile the
code by typing make. After running the ChebyRoot program successfully, you should find
two files in the directory

1. Square root BR roots.dat:
which contains the roots of the polynomial in bit-reverse order [32].

2. normierungLocal.dat:
which contains a normalisation constant.

Copy these two files into the directory where you run the code and adjust the input
parameters to match exactly the values used for the root computation. I.e. the input
parameters StildeMin, StildeMax and DegreeOfMDPolynomial must be set appropri-
ately in the NDPOLY monomial. The maximal degree ñmax for P̃ can be influenced using
MaxPtildeDegree.

The minimal and maximal eigenvalue of the non-degenerate flavour doublet can be
computed as an online measurement. The frequency can be specified in the NDPOLY

monomial with the input parameter ComputeEVFreq and they are written to the file
called phmc.data. Note that this is not a cheap operation in terms of computer time.
However, if the approximation interval of the polynomial is chosen wrongly the algorithm
performance might deteriorate drastically, in particular if the upper bound is set wrongly.
It is therefore advisable to introduce some security measure in particular in the value of
s̃max.

While the degree of the MD polynomial can be adjusted in the input file, the degree
of P̃ used in the heatbath and acceptance steps is computed at the beginning of the
run depending on the precision specified in the input file. The procedure is as follows:
Compute the first ñmax coefficients di of the polynomial. Then determine the degree ñ of
P̃ such that

nmax∑
i=n

di < ϵ

where ϵ is set using the input parameter PrecisionPtilde.

C Even/Odd Preconditioning

C.1 HMC Update

In this section we describe how even/odd [33, 34] preconditioning can be used in the HMC
algorithm in presence of a twisted mass term. Even/odd preconditioning is implemented
in the tmLQCD package in the HMC algorithm as well as in the inversion of the Dirac
operator, and can be used optionally.
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We start with the lattice fermion action in the hopping parameter representation in
the χ-basis written as

S[χ, χ̄, U ] =
∑
x

{
χ̄(x)[1 + 2iκµγ5τ

3]χ(x)

− κχ̄(x)
4∑

µ=1

[
U(x, µ)(r − γµ)χ(x+ aµ̂)

+ U †(x− aµ̂, µ)(r + γµ)χ(x− aµ̂)
]}

≡
∑
x,y

χ̄(x)Mxyχ(y) .

(13)

For convenience we define µ̃ = 2κµ. Using the matrix M one can define the hermitian
(two flavour) operator:

Q ≡ γ5M =

(
Q+

Q−

)
(14)

where the sub-matrices Q± can be factorised as follows (Schur decomposition):

Q± = γ5

(
1± iµ̃γ5 Meo

Moe 1± iµ̃γ5

)
= γ5

(
M±

ee Meo

Moe M±
oo

)
=

(
γ5M

±
ee 0

γ5Moe 1

)(
1 (M±

ee)
−1Meo

0 γ5(M
±
oo −Moe(M

±
ee)

−1Meo)

)
.

(15)

Note that (M±
ee)

−1 can be computed to be

(1± iµ̃γ5)
−1 =

1∓ iµ̃γ5
1 + µ̃2

. (16)

Using det(Q) = det(Q+) det(Q−) the following relation can be derived

det(Q±) ∝ det(Q̂±)

Q̂± = γ5(M
±
oo −Moe(M

±
ee)

−1Meo) ,
(17)

where Q̂± is only defined on the odd sites of the lattice. In the HMC algorithm the
determinant is stochastically estimated using pseudo fermion field ϕo: Now we write the
determinant with pseudo fermion fields:

det(Q̂+Q̂−) =

∫
DϕoDϕ†

o exp(−SPF)

SPF ≡ ϕ†
o

(
Q̂+Q̂−

)−1

ϕo ,

(18)

where the fields ϕo are defined only on the odd sites of the lattice. In order to compute the
force corresponding to the effective action SPF we need the variation of SPF with respect
to the gauge fields (using δ(A−1) = −A−1δAA−1):

δSPF = −[ϕ†
o(Q̂+Q̂−)

−1δQ̂+(Q̂+)
−1ϕo + ϕ†

o(Q̂−)
−1δQ̂−(Q̂+Q̂−)

−1ϕo]

= −[X†
oδQ̂+Yo + Y †

o δQ̂−Xo]
(19)

60



with Xo and Yo defined on the odd sides as

Xo = (Q̂+Q̂−)
−1ϕo, Yo = (Q̂+)

−1ϕo = Q̂−Xo , (20)

where (Q̂±)
† = Q̂∓ has been used. The variation of Q̂± reads

δQ̂± = γ5
(
−δMoe(M

±
ee)

−1Meo −Moe(M
±
ee)

−1δMeo

)
, (21)

and one finds

δSPF = −(X†δQ+Y + Y †δQ−X)

= −(X†δQ+Y + (X†δQ+Y )†)
(22)

where X and Y are now defined over the full lattice as

X =

(
−(M−

ee)
−1MeoXo

Xo

)
, Y =

(
−(M+

ee)
−1MeoYo
Yo

)
. (23)

In addition δQ+ = δQ− = δQ,M †
eo = γ5Moeγ5 and M †

oe = γ5Meoγ5 has been used. Since
the bosonic part is quadratic in the ϕo fields, the ϕo are generated at the beginning of
each molecular dynamics trajectory with

ϕo = Q̂+R, (24)

where R is a random spinor field taken from a Gaussian distribution with norm one.

C.1.1 Symmetric even/odd Preconditioning

One may write instead of eq. (15) the following symmetrical factorisation of Q±:

Q± = γ5

(
M±

ee 0
Moe M±

oo

)(
1 (M±

ee)
−1Meo

0 (1− (M±
oo)

−1Moe(M
±
ee)

−1Meo)

)
. (25)

Where we can now re-define

Q̂± = γ5(1− (M±
oo)

−1Moe(M
±
ee)

−1Meo) (26)

With this re-definition the procedure is analogous to what we discussed previously. Only
the vectors X and Y need to be modified to

X =

(
−(M−

ee)
−1Meo(M

−
oo)

−1Xo

Xo

)
,

Y =

(
−(M+

ee)
−1Meo(M

+
oo)

−1Yo
Yo

)
.

(27)

Note that the variation of the action is still given by

δSPF = −Re(X†δQ+Y ) . (28)
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C.1.2 Mass non-degenerate flavour doublet

Even/odd preconditioning can also be implemented for the mass non-degenerate flavour
doublet Dirac operator Dh eq. (5). Denoting

Qh = γ5Dh

the even/odd decomposition is as follows

Qh =

(
(γ5 + iµ̄τ 3 − ϵ̄γ5τ

1) Qh
eo

Qh
oe (γ5 + iµ̄τ 3 − ϵ̄γ5τ

1)

)
=

(
Qh

ee 0
Qh

oe 1

)
·
(
1 (Qh

ee)
−1Qeo

0 Q̂h
oo

) (29)

where Q̂h
oo is given in flavour space by

Q̂h
oo = γ5

1 + iµ̄γ5 − Moe(1−iµ̄γ5)Meo

1+µ̄2−ϵ̄2
−ϵ̄
(
1 + MoeMeo

1+µ̄2−ϵ̄2

)
−ϵ̄
(
1 + MoeMeo

1+µ̄2−ϵ̄2

)
1− iµ̄γ5 − Moe(1+iµ̄γ5)Meo

1+µ̄2−ϵ̄2


with the previous definitions of Meo etc. The implementation for the HMC is very similar
to the mass degenerate case. Q̂h has again a hermitian conjugate given by

(Q̂h)† = τ 1 Q̂h τ 1

C.1.3 Combining Clover and Twisted mass term

We start again with the lattice fermion action in the hopping parameter representation
in the χ-basis now including the clover term written as

S[χ, χ̄, U ] =
∑
x

{
χ̄(x)[1 + 2κcSWT + 2iκµγ5τ

3]χ(x)

− κχ̄(x)
4∑

µ=1

[
U(x, µ)(r − γµ)χ(x+ aµ̂)

+ U †(x− aµ̂, µ)(r + γµ)χ(x− aµ̂)
]}

≡
∑
x,y

χ̄(x)Mxyχ(y) ,

(30)

with the clover term T . For convenience we define µ̃ ≡ 2κµ and c̃SW = 2κcSW . Using the
matrix M one can define the (two flavour) operator:

Q ≡ γ5M =

(
Q+

Q−

)
(31)

where the sub-matrices Q± can be factorised as follows (Schur decomposition):

Q± = γ5

(
1 + Tee ± iµ̃γ5 Meo

Moe 1 + Too ± iµ̃γ5

)
= γ5

(
M±

ee Meo

Moe M±
oo

)
=

(
γ5M

±
ee 0

γ5Moe 1

)(
1 (M±

ee)
−1Meo

0 γ5(M
±
oo −Moe(M

±
ee)

−1Meo)

)
.

(32)
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Note that (M±
ee)

−1 cannot be computed as easily as in the case of Twisted mass fermions
without clover term. Using det(Q) = det(Q+) det(Q−) the following relation can be
derived

det(Q±) ∝ det(1 + Tee ± iµ̃γ5) det(Q̂±)

Q̂± = γ5((1 + Too ± iµ̃γ5)−Moe(1 + Tee ± iµ̃γ5)
−1Meo) ,

(33)

where Q̂± is only defined on the odd sites of the lattice. In the HMC algorithm the second
determinant is stochastically estimated using pseudo fermion fields ϕo: now we write the
determinant with pseudo fermion fields:

det(Q̂+Q̂−) =

∫
DϕoDϕ†

o exp(−SPF)

SPF ≡ ϕ†
o

(
Q̂+Q̂−

)−1

ϕo ,

(34)

where the fields ϕo are defined only on the odd sites of the lattice. From the first factor
in the Schur decomposition a second term needs to be taken into account in the effective
action for the fermion determinant, this reads

Sdet = − log[det(1 + Tee + iµ̃γ5) · det(1 + Tee − iµ̃γ5)]

= −Tr[log(1 + Tee + iµ̃γ5) + log(1 + Tee − iµ̃γ5)] .
(35)

Note that for µ̃ = 0, det(1 + Tee) is real. For µ̃ ̸= 0 however, det(1 + Tee + iµ̃γ5) is the
complex conjugate of det(1 + Tee − iµ̃γ5) as the product of the two must be real. The
latter can be seen from

(1 + Tee + iµ̃γ5) · (1 + Tee − iµ̃γ5) =

(1 + Tee)
2 + µ̃2 .

In order to compute the force corresponding to the effective action SPF we need the
variation of SPF with respect to the gauge fields (using δ(A−1) = −A−1δAA−1):

δSPF = −[ϕ†
o(Q̂+Q̂−)

−1δQ̂+(Q̂+)
−1ϕo + ϕ†

o(Q̂−)
−1δQ̂−(Q̂+Q̂−)

−1ϕo]

= −[X†
oδQ̂+Yo + Y †

o δQ̂−Xo]
(36)

with Xo and Yo defined on the odd sides as

Xo = (Q̂+Q̂−)
−1ϕo, Yo = (Q̂+)

−1ϕo = Q̂−Xo , (37)

where (Q̂±)
† = Q̂∓ has been used. The variation of Q̂± reads

δQ̂± = γ5
(
δToo − δMoe(M

±
ee)

−1Meo −Moe(M
±
ee)

−1δMeo

+Moe(M
±
ee)

−1δTee(M
±
ee)

−1Meo

)
,

(38)

and one finds

δSPF = −(X†δQ+Y + Y †δQ−X)

= −(X†δQ+Y + (X†δQ+Y )†)
(39)

where X and Y are now defined over the full lattice as

X =

(
−(M−

ee)
−1MeoXo

Xo

)
, Y =

(
−(M+

ee)
−1MeoYo
Yo

)
. (40)
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In addition δQ+ = δQ− = δQ,M †
eo = γ5Moeγ5 and M †

oe = γ5Meoγ5 has been used. δQ is
now the original

δQ = γ5

(
δTee δMeo

δMoe δToo

)
defined over the full lattice. Since the bosonic part is quadratic in the ϕo fields, the ϕo

are generated at the beginning of each molecular dynamics trajectory with

ϕo = Q̂+R, (41)

where R is a random spinor field taken from a Gaussian distribution with norm one.

The additional bit in the action Sdet needs to be treated separately. The variation of
this part is

δSdet = −Tr
{[

(1 + iµ̃γ5 + Tee)
−1 + (1− iµ̃γ5 + Tee)

−1
]
δTee

}
. (42)

The main difference in between pure Twisted mass fermions and Twisted mass fermions
plus clover term is that the matrices Mee and Moo need to be inverted numerically. A
stable numerical method for this task needs to be devised.

For the implementation it is useful to compute the term

1 + Taα,bβ = 1 +
i

2
cswκσ

αβ
µνF

ab
µν(x) (43)

once for all x. This is implemented in clover leaf.c in the routine sw term. The twisted
mass term is not included in this routine, as this would require double the storage for
plus and minus µ, respectively. It is easier to add the twisted mass term in later on.

The term in eq. (43) corresponds to a 12×12 matrix in colour and spin which reduces
to two complex 6 × 6 matrices per site because it is block-diagonal in spin (one matrix
for the two upper spin components, one for the two lower ones). For each 6 × 6 matrix
the off-diagonal 3 × 3 matrices are just hermitian conjugate to each other since 1 + T is
hermitian. We therefore get away with storing two times three 3 × 3 complex matrices.
These are stored in the array sw[VOLUME][3][2] of type su3. Here, sw[x][0][0] is
the upper diagonal 3 × 3 matrix, sw[x][1][0] the upper off-diagnoal 3 × 3 matrix and
sw[x][2][0] the lower diagonal matrix. The lower off-diagonal matrix would be the
hermitian conjugate of sw[x][1][0]. The second 6 × 6 matrix is stored following the
same conventions.

For computing Sdet, we take into account the structure of the 24 × 24 flavour, spin
and colour matrix:

Mee(x) =


A(x) + iµ̃ 0 0 0

0 B(x)− iµ̃ 0 0
0 0 A(x)− iµ̃ 0
0 0 0 B(x) + iµ̃

 , (44)

where A and B are the 6× 6 matrices mentioned above and are individually hermitian.

The implementation sw trace in clover det.c populates a temporary 6 × 6 array
from the sw array and adds +iµ to the diagonal. Using det(γ5) = 1, the contribution to
the effective action is then:

log det(Mee) = log
(
| det(A+ iµ̃)|2 · | det(B + iµ̃)|2

)
= log

(
| det(A+ iµ̃)|2

)
+ log

(
| det(B + iµ̃)|2

)
,

(45)
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where the summands are computed individually in a loop.

When it comes to computing the inverse of 1± iµγ5+Tee, the dependence on the sign
of µ is unavoidable. However, it is only needed for even (odd) sites, so we can use an
array sw inv[VOLUME][4][2] of type su3 to store e.g. +µ at even and −µ at odd sites.

For evaluating the force for Sdet in the function sw deriv we have to compute

Trdirac[ iσµν(1 + Tee(x)± iµ̃γ5)
−1 ] , (46)

with σµν = iγµγν ∀µ ̸= ν. The matrix (1 + Tee(x)± iµ̃γ5)
−1 has the general structure

Tdet =


u0 u1 0 0
u3 u2 0 0
0 0 l0 l1
0 0 l3 l2

 .

Evaluating eq. (46) with matrix Tdet for µ ̸= ν leads to the following terms

µν

01 −i((l1 − u1) + (l3 − u3))

02 (l1 − u1)− (l3 − u3)

03 i((l2 − u2)− (l0 − u0))

12 i((l2 + u2)− (l0 − u0))

13 (l3 + u3)− (l1 + u1)

23 −i(l3 + u3 + l1 + u1) .

The force for SPF can be computed in exactly the same way, even if in this case the matrix
TPF is a full matrix stemming from

Trdirac[ iσµν(γ5Y (x)⊗X†(x) + γ5X(x)⊗ Y †(x)) ] ≡ Trdirac[ iσµν TPF ] . (47)

TPF is computed in the function sw spinor. After multiplying with σµν only the upper
left and lower right blocks survive and the structure stays identical to the case discussed
for Tdet. So in both cases, in order to compute the trace, we have to compute first in the
functions sw spinor and sw deriv only

mi = li − ui , pi = li + ui i = 0, ..., 3 . (48)

The mi and pi are then passed on to the function sw all which combines them to the
correct insertion matrices, whereafter the traceless antihermitian part of it is computed.
Finally, δTee is computed and combined with the insertion matrices.

C.1.4 Combining Clover and Nondegenerate Twisted mass term

Now we have
Q̂h

oo = γ5(M
h
oo − (Mh

oe (M
h
ee)

−1 Mh
eo) ,

with
Mh

oo|ee = 1 + Too|ee + iµ̄γ5τ
3 − ϵ̄τ 1 . (49)

The clover part 1+Tee is identical to the one in the Nf = 2 flavour case and stored in
the array sw.
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Because 1 + Tee is hermitian, we can invert Mh
ee by

(1 + Tee + iµ̄γ5τ
3 − ϵ̄τ 1)−1 =

(1 + Tee − iµ̄γ5τ
3 + ϵ̄τ 1)

(1 + Tee)2 + µ̄2 − ϵ̄2
. (50)

In practice we compute ((1 + Tee)
2 + µ̄2 − ϵ̄2)−1 and store the result in the first VOLUME/2

elements of the array sw inv. Wherever the clover terms needs to be applied we then
multiply with ((1+Tee)

2+ µ̄2− ϵ̄2)−1 and then with the nominator in eq. (50). One could
save computing time here for the price of using more memory by storing the full inverse.
Actually, it would be only slightly more than in the two flavour case: in addition we would
only have to store ϵ̄((1 + Tee)

2 + µ̄2 − ϵ̄2)−1. This would also allow to re-use a lot of the
Nf = 2 flavour implementation.

The determinant we have to compute is

det(Qh) = det[γ5(1 + Tee + iµ̄γ5τ
3 − ϵ̄τ 1)] det[Q̂h

oo].

Again, the first factor can be computed as Sdet, for which we take into account the
structure of the 24× 24 flavour, spin and colour matrix:

Mh
ee(x) =


A(x) + iµ̄ 0 −ϵ̄ 0

0 B(x)− iµ̄ 0 −ϵ̄
−ϵ̄ 0 A(x)− iµ̄ 0
0 −ϵ̄ 0 B(x) + iµ̄

 , (51)

where A and B are the 6×6 matrices mentioned in sub-section C.1.3 and are individually
hermitian.

The determinant of the 24 × 24 matrix can be simplified by writing it as follows in
12× 12 blocks in flavour:

det(Mh
ee) = det

(
K D
D K†

)
= det

[(
K D −KD−1K†

D 0

)
·
(
1 D−1K†

0 1

)]
= − det(D) · det(D −KD−1K†)

= det(KK† −D2)

= det(A2 + µ̄2 − ϵ̄2) · det(B2 + µ̄2 − ϵ̄2) ,

where the sign in the second line comes from the first term and in the third line the
proportionality of D to the identity matrix was used.

The implementation sw trace nd in clover det.c populates a temporary 6×6 array
from the sw array, squares it and adds µ̄2 − ϵ̄2 to the diagonal. Using det(γ5) = 1, the
contribution to the effective action is then:

log det(Mee) = log
(
det(A2 + µ̄2 − ϵ̄2) · det(B2 + µ̄2 − ϵ̄2)

)
. (52)

For the variation of this term we have to compute now

Trdirac,flavour[ iσµν(1 + Tee(x) + iµ̄γ5τ
3 − ϵ̄τ 1)−1 ] , (53)

which is equal to

Trdirac,flavour

[
iσµν

(1 + Tee − iµ̄γ5τ
3 + ϵ̄τ 1)

(1 + Tee)2 + µ̄2 − ϵ̄2

]
. (54)

The trace in flavour simplifies the computation to

Trdirac

[
iσµν

2(1 + Tee)

(1 + Tee)2 + µ̄2 − ϵ̄2

]
. (55)

This can be treated analogously to the degenerate case described above.
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C.2 Inversion

In addition to even/odd preconditioning in the HMC algorithm as described above, it can
also be used to speed up the inversion of the fermion matrix.

Due to the factorization (15) the full fermion matrix can be inverted by inverting the
two matrices appearing in the factorization(

M±
ee Meo

Moe M±
oo

)−1

=

(
1 (M±

ee)
−1Meo

0 (M±
oo −Moe(M

±
ee)

−1Meo)

)−1(
M±

ee 0
Moe 1

)−1

.

The two factors can be simplified as follows:(
M±

ee 0
Moe 1

)−1

=

(
(M±

ee)
−1 0

−Moe(M
±
ee)

−1 1

)
and (

1 (M±
ee)

−1Meo

0 (M±
oo −Moe(M

±
ee)

−1Meo)

)−1

=

(
1 −(M±

ee)
−1Meo(M

±
oo −Moe(M

±
ee)

−1Meo)
−1

0 (M±
oo −Moe(M

±
ee)

−1Meo)
−1

)
.

The complete inversion is now performed in two separate steps: First we compute for a
given source field ϕ = (ϕe, ϕo) an intermediate result φ = (φe, φo) by:(

φe

φo

)
=

(
M±

ee 0
Moe 1

)−1(
ϕe

ϕo

)
=

(
(M±

ee)
−1ϕe

−Moe(M
±
ee)

−1ϕe + ϕo

)
.

This step requires only the application of Moe and (M±
ee)

−1, the latter of which is given
by Eq (16). The final solution ψ = (ψe, ψo) can then be computed with(

ψe

ψo

)
=

(
1 (M±

ee)
−1Meo

0 (M±
oo −Moe(M

±
ee)

−1Meo)

)−1(
φe

φo

)
=

(
φe − (M±

ee)
−1Meoψo

ψo

)
,

where we defined
ψo = (M±

oo −Moe(M
±
ee)

−1Meo)
−1φo .

Therefore the only inversion that has to be performed numerically is the one to generate
ψo from φo and this inversion involves only an operator that is better conditioned than
the original fermion operator.

Even/odd preconditioning can also be used for the mass non-degenerate Dirac operator
Dh eq. (5). The corresponding equations follow immediately from the previous discussion
and the definition from eq. (29).

C.2.1 Inverting M on ϕo

In case inverting the full matrix M is much faster than inverting the even/odd precondi-
tioned matrix – as might be the case with deflation, one may use for symmetric even/odd
preconditioning

(M̂±)−1ϕo = Pl→o (M±)
−1 Po→l M

±
oo ϕo (56)
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Where Pl→o projects the odd sides of a full spinor and Po→l reverses this by filling up
with zeros. M± is here just γ5Q±. For asymmetric even/odd preconditioning the formula
reads

(M̂±)−1ϕo = Pl→o (M±)
−1 Po→l ϕo . (57)

It is based on the observation that

M−1 =

(
Aee Aeo

Aoe Aoo

)
with (skipping the ± index for brevity)

Aee = (1−M−1
ee MeoM

−1
oo Moe)

−1 M−1
ee

Aeo = −M−1
ee Meo Aoo

Aoe = −M−1
oo Moe Aee

Aoo = (1−M−1
oo MoeM

−1
ee Meo)

−1 M−1
oo

In practice The projectors Pl→o and Po→l are trivially implemented by inverting the full
matrix on a spinor with all even sites set to zero and the odd sites to ϕo.

Using this allows one to use one the one hand the speeding up due to even/odd
preconditioning in the HMC, and on the other hand the speeding up due to a deflated
solver.

C.3 Hasenbusch trick for dynamical tmQCD

We shall now discuss the the trick presented in [35] (mass preconditioning) for dynamical
twisted mass lattice QCD. Let Q̂± and Ŵ± be two matrices as defined in (17) with two
parameters µ1 and µ2, respectively. The idea is to choose µ2 bigger than µ1. With this
we can write

det[Q̂+Q̂−] = det[Ŵ+Ŵ−] · det[Ŵ−1
+ Q̂+Q̂−Ŵ

−1
− ]. (58)

The first term on the right hand side of (58) can be handled as described in the pre-
vious section. The second term needs some further investigation: we again write the
determinant as an integral over pseudo fermion fields:

det[Ŵ−1
+ Q̂+Q̂−Ŵ

−1
− ] ∝

∫
D[ϕo]D[ϕ†

o] exp(−ϕ†
o(Ŵ

−1
+ Q̂+Q̂−Ŵ

−1
− )−1ϕo)

=

∫
D[ϕo]D[ϕ†

o] exp(−ϕ†
oŴ−Q̂

−1
− Q̂−1

+ Ŵ+ϕo)

=

∫
D[ϕo]D[ϕ†

o] exp(−SF2)

(59)

The variation of SF2 , needed for the HMC, then reads as follows:

δSF2 = ϕ†
o[δŴ−(Q̂+Q̂−)

−1Ŵ+ + Ŵ−(Q̂+Q̂−)
−1δŴ+]ϕo

− ϕ†
o[Ŵ−Q̂

−1
− δQ̂−(Q̂+Q̂−)

−1Ŵ+ + Ŵ−(Q̂+Q̂−)
−1δQ̂+Q̂

−1
+ Ŵ+]ϕo

(60)

If we define now

XW = (Q̂+Q̂−)
−1Ŵ+ϕo , YW = Q̂−1

+ Ŵ+ϕo = Q̂−XW , (61)
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we can rewrite (60):

δSF2 = ϕ†
oδŴ−XW +X†

W δŴ+ϕo

− Y †
W δQ̂−XW −X†

W δQ̂+YW .
(62)

Recalling the variation of Q̂± (and of Ŵ±):

δQ̂± = γ5
(
−δMoe(1± iµ1γ5)

−1Meo −Moe(1± iµ1γ5)
−1δMeo

)
,

δŴ± = γ5
(
−δMoe(1± iµ2γ5)

−1Meo −Moe(1± iµ2γ5)
−1δMeo

)
,

(63)

we find:

δSF2 = Y †
2 δQX2 +X†

2δQY2 −X†
1δQY1 − Y †

1 δQX1

= 2Re
[
Y †
2 δQX2 − Y †

1 δQX1

]
,

(64)

where the fields X1,2, Y1,2 and the matrix δQ are now defined over the full lattice as
follows:

Y1 =

(
−(1 + iµ1γ5)

−1MeoYW
YW

)
, Y2 =

(
−(1 + iµ2γ5)

−1Meoϕo

ϕo

)
,

X1,2 =

(
−(1− iµ1,2γ5)

−1MeoXW

XW

)
, δQ = γ5

(
0 δMeo

δMoe 0

)
.

(65)

The bosonic part is again quadratic in the fields ϕo and can be therefore generated at the
beginning of each molecular dynamics trajectory with:

ϕo = Ŵ−1
+ Q̂+R (66)

where R is again a random spinor field taken from a Gaussian distribution with norm
one.

This can again be used also with symmetrical even/odd preconditioning by re-defining
Y1,2 and X1,2

Y1 =

(
−(1 + iµ1γ5)

−1Meo(1 + iµ1γ5)
−1YW

YW

)
Y2 =

(
−(1 + iµ2γ5)

−1Meo(1 + iµ2γ5)
−1ϕo

ϕo

)
,

X1,2 =

(
−(1− iµ1,2γ5)

−1Meo(1− iµ1,2γ5)
−1XW

XW

)
.

(67)

C.3.1 Hasenbusch-Trick and Twisted-Clover

In order to avoid to recompute (1 ± iµγ5 + Tee(x))
−1 too often, the following version of

mass preconditioning – which is close to the original paper [35] – might be best suited for
Twisted-Clover: define

Ŵ± = Q̂± ± iρ = γ5(M̂± ± iργ5) (68)

with a real mass-shift ρ. Here Q̂± is now the even/odd preconditioned clover operator
eq. (33)

Q̂± = γ5((1 + Too ± iµ̃γ5)−Moe(1 + Tee ± iµ̃γ5)
−1Meo) .
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Then we have Ŵ+ = Ŵ †
− and δQ̂± = δŴ±. The latter is given by eq. (38)

δQ̂± = γ5
(
δToo − δMoe(M

±
ee)

−1Meo −Moe(M
±
ee)

−1δMeo

+Moe(M
±
ee)

−1δTee(M
±
ee)

−1Meo

)
,

which is in particular independent of ρ. The pseudo-fermion action of a determinant ratio
is then given by

SPF = ϕ†Ŵ−(Q̂+Q̂−)
−1Ŵ+ϕ

and the variation of SPF is again given by eq. (60). We also define again XW and YW as
in eq. (61)

XW = (Q̂+Q̂−)
−1Ŵ+ϕo , YW = Q̂−1

+ Ŵ+ϕo = Q̂−XW

With this definition the variation of SPF reads

δSPF = ϕ†δQ̂−XW +X†
W δQ̂+ϕ− Y †

W δQ̂−XW −X†
W δQ̂+YW

= (ϕ− YW )†δQ̂−XW +X†
W δQ̂+(ϕ− YW )

= 2Re[(ϕ− YW )†δQ̂−XW ] .

(69)

Defining analogously to eq. (65) two full vectors X, Y as follows

Y =

(
−(1 + iµγ5 + Tee(x))

−1Meo(ϕ− YW )
(ϕ− YW )

)
,

X =

(
−(1− iµγ5 + Tee(x))

−1MeoXW

XW

)
,

(70)

we get
δSPF = 2Re[Y † δQX] , (71)

where again

δQ = γ5

(
δTee δMeo

δMoe δToo

)
.

C.4 Rational HMC

For the heavy doublet one may alternatively use a rational approximation

R(Q̂2
h) =

N∏
i=1

Q̂2
h + a2i−1

Q̂2
h + a2i

≈ 1√
Q̂2

h

where we used the shorthand notation

Q̂2
h = γ5D̂hτ

1γ5D̂hτ
1

and Q̂h = γ5D̂hτ
1 is the even/odd preconditioned version of Qh defined in Eq. (5). Ob-

viously, we have Q̂†
h = Q̂h. We are using the Zolotarev solution for the optimal rational

approximation to 1/
√
y. The coefficients ai fulfill the property

a1 > a2 > ... > a2N > 0 .
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We use the partial fraction expansion to re-express

R(Q̂2
h) = 1 +

N∑
i=1

qi

Q̂2
h + µ2

i

.

The coefficients ri are given as

qi = (a2i−1 − a2i)
N∏

m=1,m ̸=i

a2m−1 − a2i
a2m − a2i

, i = 1, ..., N .

If we defined – following Lüscher – µi =
√
a2i and νi =

√
a2i−1, we may rewrite qi as

qi = (ν2i − µ2
i )

N∏
m=1,m ̸=i

ν2m − µ2
i

µ2
m − µ2

i

, i = 1, ..., N .

For the heatbath step we need to generate pseudo-fermion fields from Gaussian random
fields R

R†R = ϕ†Rϕ

and, therefore, we need operators C†, C with

R−1 = C† · C , ϕ = C ·R .

C is given by (inspired by twisted mass)

C =
N∏
i=1

Q̂h + iµi

Q̂h + iνi

which can again be written as a partial fraction

C = 1 + i
N∑
i=1

ri

Q̂h + iνi
,

with

ri = (µi − νi)
N∏

m=1,m ̸=i

µm − νi
νm − νi

, i = 1, ..., N .

The rational approximation R can be applied to a vector using a multi-mass solver and
the partial fraction representation. The same works for C: after solving N equations
simultaneously for (Q̂2

h+ ν
2
i )

−1, i = 1, ..., N , we have to multiply every term with (Q̂h−
iνi). The hermitian conjugate of C is given by

C† = 1− i
N∑
i=1

ri

Q̂h − iνi
,

using Q̂†
h = Q̂h.

For the acceptance step one just needs an application of R.
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C.4.1 Force Computation

For the derivative and the force computation we have to consider terms of the form

ϕ† qi

Q̂2
h + µ2

i

ϕ ,

and its variation with respect to the gauge fields:

δU ϕ† qi

Q̂2
h + µ2

i

ϕ = qiϕ
† 1

Q̂h + iµi

1

Q̂h − iµi

(−δUQ̂h)
1

Q̂h − iµi

ϕ + h.c.

= −2Re

(
qiϕ

† 1

Q̂2
h + µ2

i

(δUQ̂h)
1

Q̂h − iµi

ϕ

)

C.4.2 Splitting of the Rational

For preconditioning the fermion determinant it is useful to split the rational into several
products

R(Q̂2
h) = rl0(Q̂

2
h) · rkl (Q̂2

h) · ...

with terms

rc1c0 =

c1∏
i=c0

Q̂2
h + a2i−1

Q̂2
h + a2i

.

Every term rc1c0 can then again be written as a partial fraction with the same coefficients as
given above. In Ref. [36] it was shown that the different partial fractions contribute quite
differently in their magnitude of the corresponding force to the MD evolution: the smallest
shifts and, therefore, most expensive ones contribute the least to the force. Hence, those
can be integrated on a larger timescale than the larger shifts, which contribute significantly
more to the total MD force.

C.4.3 Correction Monomial

The rational approximation has a finite precision. In the HMC one can account for this
effect by estimating

1− |Q̂h|R ,

which can be done in different ways:

� we include an additional monomial for

det(|Q̂h|R)

in the Hamiltonian. If the rational apprximation is precise enough, it is sufficient to
only include this in the heatbath and acceptance step and ignore the contribution
to the derivative. For generating the pseudo-fermion field for this monomial, one
needs to find

B ·B† = |Q̂h|R,

which, following Ref. [37], can be expanded in terms of

Z = Q̂2
hR2 − 1 .
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The series

B = (1 + Z)1/4 = 1 +
1

4
Z − 3

32
Z2 +

7

128
Z3 + ...

is rapidly converging and can usually be truncated after the Z2 or latest Z3 term,
see Refs. [37, 38]. We then obtain the pseudo-fermion field ϕ by

ϕ = B ·R ,

where R is again a random Gaussian field. For the acceptance step one needs to
compute

ϕ†(|Q̂h|R)−1ϕ ,

which, again expanding in Z is obtained by

ϕ†(1 + Z)−1/2ϕ = ϕ†(1− 1

2
Z +

3

8
Z2 − 5

16
Z3 + ...)ϕ .

Also here the series can be truncated after the first few terms. Since the correction
monomial is not used in the force computation of MD, its final purpose for the HMC
is to compute the energy difference

dHcorr = R† (1− (1 + Zold)
1/4(1 + Znew)

−1/2(1 + Zold)
1/4
)
R .

Considering O(Zold) = O(Znew) = O(Z) and using the previous series expansions,
we obtain

dHcorr = R†
(
1

2
Zold −

1

2
Znew

)
R

+R†
(
−1

8
Z2

old −
1

8
{Zold, Znew}+

3

8
Z2

new

)
R

+R†
(

1

16
Z3

old +
3

64

{
Z2

old, Znew

}
− 1

32
ZoldZnewZold +

3

32

{
Zold, Z

2
new

}
− 5

16
Z3

new

)
R

+O(Z4).

The coefficients in front of the terms R†Zn
oldR are given by the series of

(1 + Zold)
1/2 − 1 =

1

2
Zold −

1

8
Z2

old +
1

16
Z3

old + ...

For this reason, computing ϕ = B(Zold) ·R, we use as a stopping criterium

cnR
†Zn

oldR < tolerance

where cn are the coefficients from the series of (1 + Zold)
1/2. Since Z is hermitian,

we can compute in advance the next order correction of the series evaluating

cn(RZold)
† · (Zn−1

old R) < tolerance ;

in this way we save an application of Z in the evaluation of ϕ = B(Zold) ·R.
Exploting the hermiticity of Z, we can also save applications of it in the computation
of

dHcorr = R†R− ϕ† ((1 + Znew)
−1/2

)
ϕ ,
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which is done in the acceptance step. Indeed defining χi = Zi
newϕ, dHcorr reads as

dHcorr = R†R− ϕ†ϕ+
1

2
ϕ†χ1ϕ− 3

8
χ†
1χ1 +

5

16
χ†
1χ2 − ... ,

that requires n applications of Znew for computing dHcorr up to O(Z2n
new). Here we

use as stopping criterium,

cnϕ
†Zn

newϕ < tolerance ;

where cn are the coefficients from the series of (1 + Znew)
−1/2.

� the second possibility is to include this correction as a reweighting factor.

� the third is to use a more precise rational approximation for the heatbath and
acceptance steps.

For evaluating the rational approximation R applied to a spinor field ψ a multi-mass
or multi-shift solver (see algorithm 4) can be used, see Ref. [10] and references therein.
However, a little care is needed as the shift vary over several orders of magnitudes.

The original Krylov space is build for the shift smallest in modulus. This will converge
slowest and, therefore, the other shifts will have the same or better precision guaranteed.
But, if the range in the shifts is too large, one needs to remove the highest shifts in
the course of the CG solve before the smallest shift is converged. This will prevent the
appearance of double precision underflow and hence the appearance of exact zeros in
ζkmax , which would lead to NaNs in the solution vectors.

In order to avoid to compute the residue for all the shift frequently during the CG-
MMS solve, one can rather monitor the norm of the correction vector pσ of the currently
biggest shift σ still in the process. The CG works such that the correction decreases with
decreasing residue. Therefore, one can remove the shift σ when

∥ασpσ∥ < δ ,

where one could for instance chose δ = c · ϵ. ϵ is the desired precision of the CGMMS
solve and 0 < c ≤ 1 some suitably chosen constant. Removing converged solutions has
the side effect of speeding up the CGMMS solve in terms of computing time.

D Deflation

D.1 Implementing Deflation

We are aiming to solve
Dψ = η

using Lüschers deflation method. Note that D is the non-hermitian (twisted) Wilson
Dirac operator.

Lets assume we have devided the whole lattice completely into blocks Λ(⃗b) on a four

dimensional grid. Every block has a grid coordinate b⃗ and we have a total number of Nb

blocks. (This is actually what we have in the MPI environment) Lets assume we have
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found N approximate (global) eigenvectors ψl, l = 1, ..., N and we have restricted them
to the blocks via

ϕb⃗
l (x) =

{
ψl(x) if x ∈ Λ(⃗b) ,

0 otherwise .

obtaining in total Nb ·N fields. And we have already orthonormalised them using Gram-
Schmidt or whatever.

Construction of the little Dirac operator

The little Dirac operator A is then computed from

A(a⃗,k)(⃗b,l) = ⟨ϕa⃗
k|Dϕb⃗

l ⟩

A(a⃗,k)(⃗b,l) is non-zero only for a⃗ = b⃗ or b⃗ = a⃗ ± µ⃗, µ = 1, ..., 4, where µ⃗ is a unit vector in
block space, because D involves only next neighbour interaction.

All elements with a⃗ = b⃗ can be computed by applying the local Dirac operator Da⃗

(i.e. all exterior boundaries set to zero, because ϕa⃗
l has support only on block Λ(⃗a))

φa⃗
l = Dϕa⃗

l = Da⃗ϕa⃗
l , l = 1, ..., N

and computing the scalar products (ϕa⃗
l , φ

a⃗
k) for all combination of l, k then. For the terms

with a⃗ ̸= b⃗ we have to be more carefully. Probably it is best done by looping over all
directions ±µ and computing

⟨ϕa⃗
l | φ

a⃗+µ⃗
k ⟩∂µΛ(a⃗)

where ∂µΛ(⃗a) denotes the inner boundary in µ-direction of block Λ(⃗a), where φa⃗+µ⃗
k is

non-zero.

The action of the little Dirac operator on a little quark field w (complex field of length
N = NS ·Nb) on block Λ(⃗a) reads:

va⃗k = A(a⃗,k)(⃗b,l)w
b⃗
l

=
N∑
l=1

A(a⃗,k)(a⃗,l)w
a⃗
l +

∑
µ

N∑
l=1

[A(a⃗,k)(a⃗+µ⃗,l)w
a⃗+µ⃗
l + A(a⃗,k)(a⃗−µ⃗,l)w

a⃗−µ⃗
l ]

or in matrix notation

va⃗ = Aa⃗,⃗awa⃗ +
∑
µ

[Aa⃗,⃗a+µ⃗wa⃗+µ⃗ + Aa⃗,⃗a−µ⃗wa⃗−µ⃗]

This involves again only next neighbour (block) interaction. Every block matrix Aa⃗,⃗b is a
N ×N complex matrix.

D.1.1 global mode deflation

We want to use the global fields ψl to deflate the little Dirac operator A. This requires
to find vectors χl, which fulfill

Bkl = ⟨ψk|Dψl⟩ = ⟨uk|Aul⟩ (72)
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for k, l = 1, ..., Ns. We recall that the fields ϕi, i = 1, ..., Nb·Ns were obtained by restricting
the fields ψl to the blocks a⃗ followed by an orthonormalisation process. So the complex
vectors ua⃗l of length N = Ns ·Nb on block a⃗ are computed from

(ua⃗l )i = ⟨ϕi|ψa⃗
l ⟩, ∀ϕi has support on block Λ(⃗a) (73)

where the notation (ua⃗)i means the i-th component of vector u on block a⃗. The little
little Dirac operator B is then given by

Bkl = ⟨uk|Aul⟩ = ⟨(uk)i|⟨ϕi|Dϕj⟩(ul)j⟩
= ⟨ψk|ϕi⟩⟨ϕi|Dϕj⟩⟨ϕj|ψl⟩ = ⟨ψk|Dψl⟩

where summing over equal indices is understood. The little Dirac operators is then de-
flated using the little oblique projectors pL and pR:

pLv = v −
Ns∑
k,l

Auk(B
−1)kl⟨ul|v⟩

pRv = v −
Ns∑
k,l

uk(B
−1)kl⟨ul|Av⟩

and the same algebra as before.

What needs to be done

� implement a suitable preconditioner

� ...

E Solvers

In this section, we give details of some of the solvers which are implemented in tmLQCD.
In particular, we clarify some of the conventions used and how these map over to the
external library interfaces.

E.1 CGMMS

The multi-shift CG implementation in tmLQCD is referred to as CGMMS since it was
originally developped to solve a multi-system of equations of the form

(A+ Iµ2
k) = b , (74)

where A can be Q+Q− or M+M− and the squared shifts µ2
i can be naturally interpreted

as different twisted quark masses (in the case of M+M−, appropriate factors of γ5 must
be inserted as required).

(Mw + iµγ5)(M †
w − iµγ5) = b

(MwM
†
w +((((((((((

iµγ5M †
w − iµMwγ

5 + µ2) = b

(MwM
†
w + µ2) = b ,

(75)
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where in the last line γ5-hermiticity of Mw was used. With the clover term, T , in the
operator, the calculation goes through in the same way, with the result

(MwM
†
w +MwT + TM †

w +((((((((((
iµγ5M †

w − iµMwγ
5 + iµγ5T − iµTγ5 + T 2 + µ2) = b

(MswM
†
sw + µ2) = b ,

(76)

where Msw =Mw + T .

The algorithm is listed below in Algorithm 4 (see also Ref. [10] and references therein),
with the identification σk = µ2

k. Note that in line 6 below, αn−1(1 + σkαn) is correct, in
contrast to Ref. [10].

Algorithm 4 CGMMS algorithm

1: n = 0, xk0 = 0, r0 = p0 = pk0 = b, kmax, δ, ϵ

2: α−1 = ζk−1 = ζk0 = 1, βk
0 = β0 = 0

3: repeat
4: αn = (rn, rn)/(pn, Apn)
5: for k = 1 to kmax do

6: ζkn+1 = (ζknαn−1)/(αnβn(1− ζkn/ζ
k
n−1) + αn−1(1 + σkαn))

7: αk
n = (αnζ

k
n+1)/ζ

k
n

8: xkn+1 = xkn + αk
np

k
n

9: if ∥αkmaxpkmax∥ < δ then
10: kmax = kmax − 1
11: end if
12: end for
13: xn+1 = xn + αnpn

14: rn+1 = rn − αnApn

15: βn+1 = (rn+1, rn+1)/(rn, rn)

16: βk
n+1 =

βn+1ζkn+1α
k
n

ζknαn

17: pkn+1 = ζkn+1rn+1 + βk
n+1p

k
n

18: n = n+ 1
19: until ∥rn∥ < ϵ

The implementations in solver/cg mms tm.c and solver/cg mms tm nd.c use a slightly
different approach in that the lowest shift is included in the operator A, such that the
higher shifts are σk − σ0 ∀k > 0.

It should be noted that
√
σk are passed to cg mms tm and the solver internally squares

these and shifts them by σ0.

E.1.1 Single flavour Wilson (clover) fermions in the rational approximation

For details about the rational approximation in tmLQCD, see Section C.4.

QPhiX interface: For the HMC with a single flavour of Wilson (clover) fermions (RAT
or CLOVERRATmonomials), the function solve mshift oneflavour of solver/monomial solve.c

provides a wrapper for tmLQCD or external multi-shift solvers.
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Note that it passes the shifts as expected by tmLQCD’s cg mms tm, which means that
they need to be squared. For the QPhiX normalisation, the QPhiX solver interface also
divides them by 4κ2. The shifts are taken as is and not shifted by σ0.

E.1.2 Two flavour Wilson twisted mass (clover) fermions in the rational ap-
proximation

QPhiX interface: For the HMC with non-degenerate twisted mass (clover) doublets
(NDRAT and NDCLOVERRAT monomials, exactly the same approach is used.
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