
R E S C I E N C E C
Replication / Computer Science

[Re] Velho and Legrand (2009) - Accuracy Study and
Improvement of Network Simulation in the SimGrid
Framework
Arnaud Legrand1,2,3,4,5, ID and Pedro Velho6
1Univ. Grenoble Alpes, Grenoble, France – 2CNRS, Délégation Alpes, Grenoble, France – 3INRIA Rhone Alpes, Grenoble, France –
4Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), Grenoble, France – 5Laboratoire d’Informatique de Grenoble,
CNRS UMR5217, 38000 Grenoble, France – 6Ryax Technologies, Lyon, France

Edited by
Benoît Girard ID

Reviewed by
Rémy Grünblatt ID

Received
04 May 2020

Published
05 December 2023

DOI
10.5281/zenodo.6265

This paper reports the successful reproduction of the results in the article [1] entitledAc-
curacy Study and Improvement of Network Simulation in the SimGrid Framework, which has
been published at the SimuTools 2009 conference. We detail several pitfalls we stum‐
bled upon during this reproduction process and report the actions we took to improve
the reproducibility of this work.
The first action we took is related to the visibility and availability of the original article.
Open access was notmandated by the funders of this research at the time of publication.
Even worse, we were regularly told about constraining copyright issues from the editors
and discouraged to make our articles publicly available. Only the bibliography entry
was available on HAL and not the PDF. Yet the preprint was hosted on the webpage of
both authors and visible mostly through the SimGrid publication webpage.
Action #1: The PDF version of the original article has been uploaded on HAL when
engaging in the replication process.

1 Historical Context

This article compares the accuracy of two methods for predicting how competing TCP
networkflows interferewith eachothers. It is thefirst articleArnaudLegrandwrotewith
his first PhD student Pedro Velho. It was already a reproduction of the work [2] of close
colleagues, Henri Casanova and Kayo Fujiwara, and we already had faced difficulties in
doing so at that time. Actually, we could never obtain the exact same numbers as them
despite their care and ours. This failure motivated us to improve our methodology, and
in particular switching to R and later to org‐mode, but it was 10 years ago. Trying to
reproduce this article was thus a good test of time!

1.1 Scientific context
SimGrid is a simulation toolkit designed to help with the performance evaluation of
large scale distributed computing systems such as data/desktop grids, clusters or peer‐
to‐peer systems. In this field, it is common to resort to simulation which enables to
explore many application and platform scenarios, including platforms which do not ex‐
ist yet, and to obtain reproducible results (in theory). Unfortunately, as noted in [3],
most researchers build their own ad hoc simulators which are rarely made (1) available

Copyright © 2023 A. Legrand and P. Velho, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Arnaud Legrand (arnaud.legrand@imag.fr)
The authors have declared that no competing interests exist.
Code is available at https://github.com/alegrand/reproducibility-challenge..
Open peer review is available at https://github.com/ReScience/submissions/issues/39.

ReScience C 6.1 (#20) – Legrand and Velho 2023 1

https://orcid.org/0000-0002-8415-1046
https://orcid.org/0000-0002-8117-7064
https://orcid.org/0000-0002-9146-9888
http://mescal.imag.fr/membres/pedro.velho/publications.html
http://mescal.imag.fr/membres/arnaud.legrand/articles/simutools09.pdf
https://simgrid.org/publications.html
https://hal.inria.fr/inria-00361031
https://www.r-project.org
https://www.orgmode.org
https://simgrid.org
mailto:arnaud.legrand@imag.fr
https://github.com/alegrand/reproducibility-challenge
https://github.com/ReScience/submissions/issues/39
https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

, which hinders both reproducibility of results and comparison of articles with one an‐
other, nor (2) validated, which makes final results quite questionable. SimGrid is a 20‐
years old attempt to provide a high quality simulation toolkit, which would be (1) stable
and perennial from a software point of view and (2) whosemodels would be as validated
as possible against reality and other simulators.
In this context, network simulation is certainly the most critical part and packet‐level
simulation is often considered as particularly realistic and faithful since they it allows
to account for every detail of network protocols. Unfortunately, such microscopic ap‐
proach is undoubtedly interesting when studying peculiarities of network protocols but
it leads to prohibitively long simulation time when studying large‐scale distributed sys‐
tems. An alternative is thus to simulate networks by relying on higher level macroscopic
models, thus enabling much faster simulation at the potential cost of an accuracy loss.
SimGrid, uses a flow‐level approach that approximates the behavior of TCP networks,
including TCP’s bandwidth sharing properties. A preliminary study of the accuracy loss
by comparing it to popular packet‐level simulators has been proposed by Fujiwara and
Casanova in [2] and in which regimes in which SimGrid’s accuracy was comparable to
that of these packet‐level simulators were identified. The article we reproduce here [1]
was a reproduction these experiments and provided a deeper analysis that enabled to
greatly improve SimGrid’s range of validity.
The interconnection network is modeled as a graph where nodes represent hosts while
edges represent network links. In SimGrid’s flow‐level modeling, the time needed to
transfer a message of size S between hosts i and j is given by:

Ti,j(S) = Li,j + S/Bi,j , (1)

where Li,j (resp. Bi,j) is the end‐to‐end network latency (resp. bandwidth) on the route
connecting i and j. Although determining Li,j may be straightforward, estimating the
bandwidth Bi,j is more difficult as it depends on interactions with every other flow.
This is generally done by assuming that the flow has reached steady-state, in which case
the simulation amounts to solving a bandwidth sharing problem, i.e., determining how
much bandwidth is allocated to each flow.
More formally, consider a connected network that consists of a set of links L, in which
each link l has capacity Bl. Consider a set of flows F , where each flow is a communica‐
tion between twonetwork vertices along a givenpath. Determine a “realistic” bandwidth
allocation ρf for flow f , so that:

∀l ∈ L,
∑

f going through l

ρf ⩽ Bl . (2)

In SimGrid, the “realistic” bandwidth sharing model [4] used is Max‐Min fairness [5],
which is reached by recursively maximizing

min
f∈F

wfρf under constraints in Eq. (2), (3)

wherewf is generally chosen as the round‐trip timeof flow f . This objective corresponds
to what one would naively expect from a network, i.e. be “as fair as possible” so that the
least favored flows receive as much bandwidth as possible while accounting through
weights wf for the well‐known RTT‐unfairness of TCP [6].
Given the computed bandwidth allocation (which defines all data transfer rates), and
the size of the data to be transmitted by each flow, one can determine which flow will
complete first. Upon completion of a flow, or upon arrival of a new flow, the bandwidth
allocation can be reevaluated. Compared to a packet‐level simulation, this approach al‐
lows to quickly step‐forward in time when large data transfers are involved. However,
since steady‐state is assumed, it ignores many transient aspects such as throughput os‐
cillations and slow start. This (in)validation work was later extended to compare with

ReScience C 6.1 (#20) – Legrand and Velho 2023 2

https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

other bandwidth sharing models [7] and has been the core of the PhD thesis of Pedro
Velho [8].
In the article we reproduce, the accuracy of the flow-level simulations of SimGrid are
compared to the packet-level simulations of GTNetS [9] the Georgia Tech Network Simu‐
lator. This was done through three series of simulations

1. One‐link: The first set of experiments is for a single TCP flow going through a
single link with varying physical latency and bandwidth, and message size. The
main goal of this scenario was to study the size for which transient effects such as
slow start are negligible.

2. A Dumbell Topology: The second set of experiments is for two TCP flows A and B
on a dumbbell topology with varying bandwidth of the inner link and latency of
the end‐link used by flow B. Themain goal of this scenario was to study the ability
of accounting for RTT‐unfairness.

3. Random Topology: 4 sets of 10 random topologies generated with a topology gen‐
erator were used. The sets comprised either small (50 nodes) or large (200 nodes)
and either relatively homogeneous or heterogeneous platforms. 200 flows were gen‐
erated between random pairs of end‐points in the topology, which all start simul‐
taneously and communicate 100MB of data. The main goal of this scenario was to
evaluate the overall accuracy of SimGrid and possibly to detect corner‐case situa‐
tions for which the SimGrid model was particularly wrong.

Due to the long simulation time, we only reproduce in this article the first series of
simulation but we checked that we could easily run at least one simulation of the two
other series.

1.2 Computational context
SimGrid is mostly written in C while GTNetS is mostly written in C++ and both are open
source simulators. Although SimGrid is designed to be as stand alone as possible, GT‐
NetS relies on third party libraries. The first challenge would thus be to reproduce a
software environment allowing to recompile and rerun both libraries.
To ease the comparison of both simulators, SimGrid had been modified to run GTNetS
internally, which allowed to easily switch between the microscopic (GTNetS) model and
the macroscopic (Max‐Min) model from the command line, while using the exact same
platform description and communication scenario. This integration required modify‐
ing both SimGrid and GTNetS and was done through a set of patches before being partly
integrated in the main branch of SimGrid. The second challenge would thus be to man‐
age to correctly modify and recompile a simulator using both libraries.

Inputs
platform-template.xml
deployment-template.xml

Simulator
./gtnets --args=...

libSimGrid
libGTNetS

Master simulation script
sweep-parse.pl

sweep-parse.pl R, perl, gnuplot

--cfg=fluid

--cfg=packet_level

Logs
output-*.txt

Comparison results
data.dat

Values, text,
and graphics

Figure 1. The simulation workflow

Although these details were not given in the articles, it could be recovered from one
of the README we found (see Figure 3 and Figure 4) and the general workflow of the
simulations for all three scenarios was as follow (see Figure 1):

• A simple C code called gtnets.c was linked against SimGrid and GTNetS;

ReScience C 6.1 (#20) – Legrand and Velho 2023 3

https://simgrid.org/
http://griley.ece.gatech.edu/MANIACS/GTNetS/
https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

• Aperl script calledsweep-parse.pl (when calledwith the sweep argument)would
generate platform and flow/deployment XML input files and run all simulations by
passing the previous XML input file to the gtnets binary with a different command
line argument to switch between the GTNetS model and the Max‐Min model. The
simulation would produce a text output.

• The same perl script (when called with the parse argument) would then parse all
the text logs and produce a csv data file.

• The data file would then be analyzed with an R script and since our mastery of R
was quite low at that time, we still relied on gnuplot to generate figures.

The third challengewould thus be tomanage to run all this workflow, provided the right
instructions could be found.
Note that although the first two series of experiments did not have much external de‐
pendencies, the third one relied on many random network topologies generated by
BRITE [10], which is a discontinued Java software, using the Waxman model [11]. The
description of the parameters used to generate the topologies were shallow and there
was no information regarding seeds so our hope to rerun this software to regenerate
the same topologies was quite low. However, theses intermediate files may have been
stored and made available. The fourth challenge would thus be to recover the network
topology and data used in the third series of experiments.

2 Rebuilding the code and its environment

2.1 Original source code and retrieval of the software

Instructions — Although the development of SimGrid is still very active, GTNetS’ develop‐
ment appears to be discontinued as the last version of GTNetS dates back October 2008.
Finding both source code is relatively easy however, the main difficulty was to find the
instructions and to know which version to use. SimGrid has successively moved from
the Inria gforge to the Inria gitlab, GitHub, and more recently Framagit. Although the
whole software history has been correctly moved in the process, we realized some infor‐
mation have not been transfered and even sometimes lost:

• Althoughwe could have used a development version of SimGrid from late 2009, we
thought it would be simpler to reproduce this work using a stable release which
integrates the GTNetS support (e.g., the version 3.3, which dates from April 2009).
Unfortunately, the releases of SimGrid on GitHub only start from May 2010. In‐
deed, although the SimGrid project started in 2000, its git history only starts in
2004 as theCVShistorywas notmigrated to SVN (itwas considered of little interest).
Later, when the development team decided to migrate from SVN to git (in 2010),
the SVN tags have not been transferred. Likewise, when the project migrated from
the Inria gforge, not all releases (as an archive) of SimGrid were transferred. For‐
tunately, all the old releases of SimGrid are still available on the Inria gforge.
Finally, note that although the whole SimGrid history is archived on Software her‐
itage, the software releases contain generatedmanyfiles (configure, Makefile.in,
documentation), which are not in themeant to be version controlled (and can thus
not be recovered from Software Heritage).

Action #2: We have uploaded the original release of SimGrid version 3.3 on
Github and archived it on Zenodo [12].

This upload is mostly manual and will be done for other old releases as soon as
possible.

ReScience C 6.1 (#20) – Legrand and Velho 2023 4

https://gforge.inria.fr/projects/simgrid/
https://gitlab.inria.fr/simgrid/simgrid/
http://github.com/simgrid/simgrid/
https://framagit.org/simgrid/simgrid/
https://github.com/simgrid/simgrid/releases?after=v3_8_1
https://gforge.inria.fr/projects/simgrid/
https://github.com/simgrid/simgrid/releases/tag/v3.3
https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

• The LATEX source of the article is stored in the private Inria Gforge simgrid‐publis
project, in an svn under the PUBLISHED/09_validation_simutools directory.

Action #3: We have made the LATEX source of the article available in the github
repository attached to this Rescience submission.

• We remembered that we had made our instructions on how conduct these exper‐
iments available somewhere but no link was given in the original article and we
could not really remember where it was as there was no standard way of doing so
back then. We initially thought they were given on the former contrib/ section of
http://simgrid.gforge.inria.fr/ (, which was hard to maintain and was thus abandoned)
or on http://simgrid-publis.gforge.inria.fr/ (, which finally only hosts data on two articles
from 2011). However even after inspecting the Internet Archive, we could not find
it.
Arnaud Legrand therefore tried to find them on his laptop but although he could
find many related files (including the topology generators) he failed finding the
right data and doing so, he realized many the data of some of his previously pub‐
lished articles were dangling links and had not been correctly transferred when
migrating from a laptop to an other! The instructions could probably have been
recovered on his backup hard drives but he had the chance to meet Pedro Velho
and to ask him whether his own backups were in better shape, which was fortu‐
nately the case. Pedro Velho could find all the required data (a 61MB zip archive)
and shared it with him. It turned out that we later realized that this archive was
also simply available from Pedro Velho’s former webpage, which is still available
but which is not highly ranked on search engines and which he cannot modify
anymore as he now works for a different company.

Action #4: We have made the instructions and data used in the original article
available in the GitHub repository attached to this Rescience submission and
archived them on Zenodo [13].

This archive comprises 3 sub‐archives corresponding to each of the 3 series of sim‐
ulationsmentioned earlier (01-onelink.tgz, 02-dumbbell.tgz, 03-random.tgz)
as well as a GTNetS version (GTNetS-Oct-10-08.tar.gz) and the master simula‐
tion file (gtnets.c) which should be compiled against SimGrid and GTNetS. The
README that can be found in each sub‐archive (see Figure 4) describes in details
how to rerun the experiments and corresponds to the process described in Sec‐
tion 1.2. A good surprise was that the third archive contained all the random
graphs used in the simulation, hence saving us the burden of trying to regener‐
ate them with BRITE. Unfortunately, the master README (see Figure 3) provides
information about dates and the contents of the archive but most information re‐
lated to software versions are broken (it was a working version, whichwe intended
to consolidate when the article would be accepted). Furthermore, after having
compiled GTNetS and a thorough inspection of the source code, we realized it did
not seem to have been modified to work with SimGrid.

• Arnaud Legrand therefore started searching again for GTNetS versions that would
be on his laptop and finally found one, along with all the patches and compiling
instructions which are crucial to correctly build such prototype software (see Fig‐
ure 5). These informationwere actually public but had become completely hidden
in the (now unmaintained and long forgotten) contrib section of the SVN (while
git is now the default version manager) of the Inria Gforge SimGrid project.

Action #5: Wehave ensured that the GTNetS version and the patches we used are
archived on Software Heritage [14].

In the end, we have thus managed to recover three important archives (see Figure 2),

ReScience C 6.1 (#20) – Legrand and Velho 2023 5

https://gforge.inria.fr/scm/?group_id=862
https://github.com/alegrand/reproducibility-challenge/tree/master/simutools09/article/
https://github.com/alegrand/reproducibility-challenge/tree/master/simutools09/article/
http://simgrid.gforge.inria.fr/
http://simgrid-publis.gforge.inria.fr/
https://web.archive.org/web/20091120124838/http://simgrid.gforge.inria.fr/doc/contrib.html
http://mescal.imag.fr/membres/pedro.velho/publications.html
https://github.com/alegrand/reproducibility-challenge/tree/master/simutools09/instructions
https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

simgrid-3.3.tar.gz

SimGrid release
gforge.inria.fr/ simgrid

GTNetS and Patches
gforge.inria.fr/ simgrid/contrib

gtnets-current-patch.tgz
gtnets-current.zip

Pedro Velho's webpage simutools09.tgz

01-onelink.tgz
02-dumbbell.tgz
03-random.tgz

Instructions and Data

GitHub: alegrand/reproducibility-challengeGitHub: simgrid/simgridNew
location

Former
location

Moved to Archived to Archived toArchived to
Moved to

Backed up by Backed up by

Figure 2. The three archives required to reproduce this work.

whose versions should be the one run to produce the results of the original SimuTools
2009 article:

1. The stable release v3.3 of SimGrid (from April 2009) from the public Inria Gforge.
Although experiments were probably run in late 2008, the previous stable SimGrid
release is from 2007 and v3.3 incorporates everything that was needed.

2. A snapshot of GTNetS from January 2008 along with the patches to apply from the
public Inria Gforge SimGrid project but which was not visible anymore.

3. The simulation instructions and data, fromone of the author’s hard drive although
they were also available from his website but both authors had forgotten about it.

Almost no information regarding the software environment was available except that it
was run on a Debian in the late 2008 (see Figure 5).

2.2 Rebuilding the software environment
SimGrid is mostly a C library whose software dependencies had at that time been kept
to the bare minimum (C and C++ compiler). Furthermore, we are developers of the
SimGrid library so building it was rather straightforward even on a recent Linux distri‐
bution. However, after trying to compile GTNetS, we quickly realized it depends on the
Qt3 GUI Library whereas the version which is now commonly found is Qt5! Therefore,
we decided to recreate a minimal software environment as close as possible to the one
of 2008.
The code name for the stable Debian distribution at that timewas LennyDebian provides
two particularly interesting tools to reproduce ”old” environments:

1. The Debian snapshot archive is a wayback machine that allows access to old pack‐
ages based on dates and version numbers. It consists of all past and current pack‐
ages the Debian distribution ever provided.

2. The Debuerreotype is a reproducible, snapshot‐based Debian rootfs builder. It al‐
lows to prepare oldDebian images from the snapshot archive, which is particularly
useful to prepare Docker images containing old software environments.

Both authors regularly used testing so after investigating a bit on the snapshot archive
which versions of the libraries were available and when they have been introduced, we
decided to try to bootstrap a debian Lenny from the 1st of May 2009 with the following
command:
debuerreotype-init --keyring=/usr/share/keyrings/debian-archive-removed-keys.gpg \

rootfs testing 2009-05-01-T03:27:08Z

Building such an image involves installing (with dpkg) old packages in a sub‐directory
pretending you are root. The keyring argument passed to debuerreotype-init allows
to indicate dpkg that it is safe to install these old packages even if they have been signed
by package maintainers which are currently not active anymore. Unfortunately, al‐
though this approachworked like a charm formore recent target dates (e.g., 2015-06-04-
T10:47:50Z), itmiserably failswith a ”Segmentation fault”when installingbase-passwd:

ReScience C 6.1 (#20) – Legrand and Velho 2023 6

https://snapshot.debian.org/
https://github.com/debuerreotype/debuerreotype
https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

simutools09/instructions/README

Author : Pedro Velho
last modified : 03/11/2008

#################################
Disclaimer
#################################

This text as well as the data and results provided here are under GPL copyright. To consult
the GPL terms and usage condition see in the top directory: GPL.txt

All programs use the gtnets.c simulation program. A source code copy is located in this
directory.

CAUTION: This script relies on parsing the output, so every modification (even slight ones)
on gtnets.c output may cause the parsing feature to unpredicted behavior. If you are not
sure about your gtnets.c file please use the one distributed here.

#################################
Short History
#################################

This directory hold experiment comparing the SimGrid framework network simulation engine
with GTNets. GTNets is a packet level network simulator and we believe it can provide
realistic transmission time prediction due to its characteristic of simulating through
discrete events the entire TCP protocol stack. This work is the normal continuation of the
work presented by Kayo Fujiwara and Henry Casanova in [1] and was submitted to the
SimuTools09 conference which is still to be evaluated and accepted/reject.

#################################
Directory Structure
#################################

Three category of experiments were performed. Each one was tackled separately and are
organize in distinct directories as follows:

* ./01-onelink - Verify message size communication time correlation
* ./02-dumbbell - Bandwidth sharing experiments
* ./03-random - Complex platforms to assure model improvements

#################################
Global System Requirements
#################################

Experiments and analyze scripts are provided to reproduce the graphs presented in
[FIXME(Rapport de recherche ou reference simutools]. To run experiments some minimum system
requirements are needed:

* GTNets patched simgrid version, we kindly provide GTNets with patches in the simgrid
contrib svn repository [FIXME]

* SimGrid, configured and compiled with GTNets support [FIXME]

For plotting graphs and explore the data:

* R - the gnu version of S [FIXME]
* Gnuplot [FIXME]

#################################
Refernces
#################################

[FIXME] The R (GNU S) language website. FIXME URL
[FIXME] Plotting scientific data with Gnuplot. FIXME URL
[FIXME] SimGrid website. FIXME URL
[FIXME] Kayo Fujiwara and Henry Casanova FIXME

Figure 3. The README which accompanies instructions recovered from Pedro Velho on the sim‐
ulation workflow are very helpful to understand the general process but lack important version
information.

ReScience C 6.1 (#20) – Legrand and Velho 2023 7

https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

simutools09/instructions/01-onelink/README

Author : Pedro Velho
last modified : 25/11/2008

#################################
Disclaimer
#################################

This text as well as the data and results provided here are under GPL copyright. To consult
the GPL terms and usage condition see in the top directory: GPL.txt

#################################
Short history
#################################

Experiments with one link are important to validate the linear model. We intend by linear
model the assumption that transmission time is correlated to size, bandwidth and latency in
some way such as T=S/B+L, for instance. More detailed description about this assumption and
the evolution of the SimGrid network engine is presented in[FIXME].

#################################
Directory structure
#################################

This directory contain many files so they are organized in a directory structure as follows:

* ./log - Tons of output generated by simgrid while running experiments
* ./dat - The raw.dat file in an R input format
* ./tmp - Temporary files, such as those generated by R when gnuplot is called within R
* ./bin - Auxiliary scripts are stored here
* ./fig - EPS images are generated inside this directory

#################################
Running Experiments
#################################

#######################
- ./bin/sweep-parse.pl
#######################

File ./bin/sweep-parse.pl is the most important script it can run the entire set of
experiments using or not a grid/cluster infrastructure to improve simulation speed. Two
parameters are used, <first-task> <last-task>. Hence this script run all experiments from
first-task up to last-task including those number passed as parameters. Before running this
script is important to correctly set the working directory as your SimGrid gtnets binary
location. All programs here use the gtnets.c program this programs source is normally
located in the experiments top directory.

After all log files are corrected collected in directory ./log this is script may be used to
parse results generating ./dat/raw.data which will contain all experiments in a R table
format.

CAUTION: This script relies on parsing the output, so every modification (even slight ones)
on the program output may cause the parsing feature to unpredicted behavior. A gtnets.c
version is stored in the top level directory of experiments, this is a trusted version, if
you are not sure about your gtnets.c file please use the one distributed here.

- Example: Be aware that executing the script should overwrite stored output.

./bin/sweep-parse.pl sweep 1 1

This generate one output trace file for the first bandwidth parameter
in ./log/trace-file-1-1.log

./bin/sweep-parse.pl parse

To parse the output, after all log files have been collected.

#######################
- analyze.R
#######################

This file contain all the R function used to analyze the data in ./dat/raw.data. The
./dat/raw.data file is generated by ./bin/sweep-parse.pl script as described before.

I'm used to analyze my data within emacs using ESS (Emacs Speaks Statistic) package.

Figure 4. The README which ships with the first set of experiments (01-onelink.tgz).

ReScience C 6.1 (#20) – Legrand and Velho 2023 8

https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

simutools09/README.patching_GTNetS

==================================
GTNetS/Simgrid patch README
author: Pedro Velho
==================================

Note About this Patch

This patch is intended to work only with GTNetS downloaded from the GTNetS website link:
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/software/gtnets-current.zip The last
time this patch was downloaded was June 12 2008, Seems they don't have much control about
new GTNetS and some other flaws it is difficult to precise a verison number.

Getting GTNetS

Two ways of getting GTNetS, one from the gtnets website and svn simgrid contrib projec tree
(RECOMMENDED).

$ wget http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/software/gtnets-current.zip
or
$ svn checkout svn://scm.gforge.inria.fr/svn/simgrid/contrib/trunk/GTNetS/

Applying the PATCH

$ unzip gtnets-current.zip
$ tar zxvf gtnets-current-patch.tgz
$ cat *.patch | patch -p1

Compilling GTNetS

Enter directory
$ cd gtnets-current
GTNetS is not a very active project for the moment and the portabillity is really limitated.
For the moment we tried out this patch only in linux platforms using:

gcc (GCC) 4.1.3 20070629 (prerelease) (Debian 4.1.2-13) Linux 2.6.21-2-686

Create a Makefile.linux symbolic link
$ ln -sf Makefile.linux Makefile
Create dependecies list
$ make depend
To compile debug version
$ make debug
To compile optimized version
$ make opt

=== WARNING ===
A lot of warnings are expected but the application should compile just fine. If the makefile
insists in compiling some QT libraries please try a make clean before asking for help.

Installing GTNetS

Commands make debug and opt generates respectivelly libgtsim-opt.so or libgtsim-debug.so.
You will need to link ONLY ONE of these libraries using the simbolic link name libgtnets.so,
for instance to libgtsim-debug.so:
ln -sf libgtsim-debug.so /<userhome>/usr/lib/libgtnets.so
'libsimgrid.so' is the name simgrid is configured to search when running ./configure script.
Now just put the library somewhere you know ldd is searching (tip: export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/<userhome>/usr/lib/libgtnets.so && sudo ldconfig)

The gtnets source headers are necessary. So you need to copy all headers to a place where
your compiler can find them, such as:
$ mkdir /<userhome>/usr/include/gtnets
$ cp -fr SRC/*.h /<userhome>/usr/include/gtnets

Compilling SimGrid with GTNetS

Just add the following option when running configure --with-gtnets=/<userhome>/usr

Bug reports, comments, suggestions: pedro.velho{\at}imag.fr

AMD64 bit patch

Some users experienced some problems during compilation on AMD64 bit architecture. We compiled
succesfully the gtnets-current package in an:

model name : AMD Opteron(tm) Processor 248
stepping : 8
cpu MHz : 2193.160
cache size : 1024 KB
clflush size : 64
cache_alignment : 64
Using gcc (GCC) 4.2.3 (Debian 4.2.3-3)

We provide a simple patch to do this: AMD64-FATAL-Removed-DUL_SIZE_DIFF-Added-fPIC-compillin.patch

Figure 5. TheREADMEwhich accompanies theGTNetS patches providesmany critical information
on how to compile GTNetS and SimGrid.
ReScience C 6.1 (#20) – Legrand and Velho 2023 9

https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

W: Failure trying to run: chroot ”/home/alegrand/Work/Documents/Articles/2020/
reproducibility_challenge/simgrid3.3_gtnets/rootfs” dpkg --force-depends

--install /var/cache/apt/archives/base-passwd_3.5.21_amd64.deb
W: See /home/alegrand/Work/Documents/Articles/2020/reproducibility_challenge/

simgrid3.3_gtnets/rootfs/debootstrap/debootstrap.log for details

error: 'debootstrap' failed!

We then decided to cry for help and asked twoDebian guru friends, Vincent Danjean and
Samuel Thibault. Samuel Thibault indicated us that he had investigated this by using
the simpler following command:
debootstrap wheezy myroot http://archive.debian.org/debian/

and that the error message was then slightly more visible
dpkg: warning: parsing file '/var/lib/dpkg/status' near line 5 package 'dpkg':
missing description

Package: dpkg
Status: install ok installed
Maintainer: unknown
Version: 1.16.18

The problem actually comes from dpkg. When bootstraping such an image, we try to
use old debian packages with a recent dpkg (the one running on our machine) so it
is not surprising that it may break. Although it is not the case, the internal format of
Debian packages could have evolved and may not be supported anymore with recent
versions of dpkg. Likewise, it is somehow a matter of luck that an old binary still works
with a recent kernel… Indeed, when using docker or similar container‐based approach,
we only divert syscalls so if the ABI of the Linux kernel had changed in the meantime,
binary codes would simply fail to run. Fortunately, such changes are quite rare and the
Linux/Debian community is making incredible efforts to provide super stable backward
compatible software so what could be the reason behind this failure?
Surprisingly Vincent Danjean reported me that the command worked like a charm for
him, whichmeans some local configuration from his machine could change this behav‐
ior. We could actually track back the problem to an ABI modification of the kernel. As
explained for example on the Einstein@Home forum, ”On latest Linux distros, vsyscall
is defaulted to none for security reasons. However, this breaks some very old binaries, including
some binaries from this project that are statically-linked against ancient versions of glibc”.
Vincent had activated this flag a long time ago to run some old proprietary code. Boot‐
ing the machine while adding vsyscall=emulate to the kernel command line solved
the problem and allows debuerreotype to build the desired rootfs.
Since this is a bit far‐fetched, we decided to trade precision for simplicity by checking
whether ready‐to‐use Docker images were available on the Docker Hub, which is the
case.

docker search debian-lenny

NAME DESCRIPTION STARS
pblaszczyk/debian-lenny 5.0.10 amd64 3
lpenz/debian-lenny-amd64 Debian 5.0.10 Released 10 March 2012 for amd… 1
lpenz/debian-lenny-i386 Debian 5.0.10 Released 10 March 2012 for i386 1
lpenz/debian-lenny-amd64-minbase Debian 5.0.10 Released 10 March 2012 for amd… 0
...

Note that the first version of Lenny (5.0.0) was introduced in February 2009 whereas
the one easily found on the DockerHub is the last version (5.0.10) which dates from
March 2012. The main differences are related to security updates and should be of not
importance for our concern. We arbitrarily chose the lpenz/debian-lenny-i386 one
but according to the instructions of Figure 5 lpenz/debian-lenny-amd64 should have
worked as well. After playing a bit interactively in this Docker image trying to install
everything we needed to build GTNetS and SimGrid, and following the patching and

ReScience C 6.1 (#20) – Legrand and Velho 2023 10

https://einsteinathome.org/content/vsyscall-now-disabled-latest-linux-distros
https://hub.docker.com/r/lpenz/debian-lenny-i386/
https://hub.docker.com/r/lpenz/debian-lenny-i386/
https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

compiling instructions, we ended up with the Dockerfile presented in Figure 6. The
image can be simply built with the following command1:

SWID=swh:1:dir:2737fd9d2bd0856bf1e024922032163364d04543
wget https://archive.softwareheritage.org/api/1/vault/flat/$SWID/raw/ \

-O simgrid3.3_gtnets/swh.tgz
wget https://zenodo.org/record/5752352/files/simgrid-3.3.tar.gz?download=1 \

-O simgrid3.3_gtnets/simgrid-3.3.tar.gz
docker build -t alegrand/simgrid3_3_gtnets simgrid3.3_gtnets

simutools09/simgrid3.3_gtnets/Dockerfile

FROM lpenz/debian-lenny-i386

LABEL maintainer=”Arnaud Legrand <arnaud.legrand@imag.fr>”

Software dependencies
RUN apt-get update \

&& apt-get install -y --force-yes gcc g++ make wget unzip subversion patch \
less libqt3-mt libqt3-headers libqt3-mt-dev qt3-dev-tools

Code dowloading and assembly dependencies
RUN apt-get update \

&& apt-get install -y --force-yes wget unzip subversion patch less

Downloading GTNetS
RUN cd /root; svn checkout svn://scm.gforge.inria.fr/svn/simgrid/contrib/trunk/GTNetS/
--- Inria gforge has been shut down, hence using SWH:
SWID=swh:1:dir:2737fd9d2bd0856bf1e024922032163364d04543/raw/
https://archive.softwareheritage.org/api/1/vault/flat/$SWID
Unfortunately, servers now only support SSLv3 so wget fails and should be done outside
COPY ./swh.tgz /root/swh.tgz
RUN cd /root; tar zxf swh.tgz ; mv swh\:1\:dir\:2737fd9d2bd0856bf1e024922032163364d04543 GTNetS
Downloading SimGrid
RUN cd /root; wget https://gforge.inria.fr/frs/download.php/file/21430/simgrid-3.3.tar.gz
--- Inria gforge has been shut down, hence using Zenodo
Furthermore, servers now only support SSLv3 so wget fails and should be done outside
https://zenodo.org/record/5752352/files/simgrid-3.3.tar.gz?download=1 -O simgrid-3.3.tar.gz
--- Unfortunately servers now only support SSLv3 so wget fails.
COPY simgrid-3.3.tar.gz /root/simgrid-3.3.tar.gz

Checking we got the right files
RUN cd /root/; \
echo ”e5cb6128f602975009b5ceac2f3a35797e99cf3d39de5d8dbf963d0855f94d9f simgrid-3.3.tar.gz” > sha256.txt ; \
echo ”e65046c5415f91caacd462db5f6d90ebe3ecffdd6a22b041f7362d672f98e81c swh.tgz” >> sha256.txt; \
sha256sum -c sha256.txt

Building GTNetS
RUN cd /root/GTNetS/; unzip gtnets-current.zip ; tar zxvf gtnets-current-patch.tgz
RUN cd /root/GTNetS/gtnets-current; cat ../00*.patch | patch -p1
RUN cd /root/GTNetS/gtnets-current; ln -sf Makefile.linux Makefile && make depend && make opt

Installing GTNetS
RUN cd /root/GTNetS/gtnets-current/ && \

mkdir -p /root/usr/lib/ && \
ln -sf `pwd`/libgtsim-opt.so /root/usr/lib/libgtnets.so && \
ln -sf `pwd`/libgtsim-opt.so /usr/lib/libgtnets.so && \
mkdir -p /root/usr/include/ && \
cp -fr SRC/*.h /root/usr/include/

Building SimGrid
RUN cd /root/ && tar zxf simgrid-3.3.tar.gz
RUN cd /root/simgrid-3.3/ && \

./configure --with-gtnets=/root/usr/ && \
export LD_LIBRARY_PATH=/root/usr/lib/libgtnets.so && \
ldconfig && \
make

RUN apt-get clean

Figure 6. The Dockerfile recipe which allows to build both GTNetS and Simgrid

1Thewget commands need to be run outside the dockerfile as our image only has SSLv2whilemost recent
servers now require SSLv3. Note however that the Dockerfile checks with sha256sum that these archives
have not been tempered.

ReScience C 6.1 (#20) – Legrand and Velho 2023 11

https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

Action #6: We have proposed a simple and automated way to build a minimalist envi‐
ronment comprising the simulation code used in the original article. This Dockerfile
recipe has been made available in the GitHub repository attached to this Rescience
submission. The resulting docker image has been made available on the DockerHub.
It can be recovered using:

docker pull alegrand38/simgrid3_3_gtnets

Note that, as such, this Dockerfile is still a bit fragile as it depends on a third party
base image (lpenz/debian-lenny-i386). Ideally, it would be improved to build on my
own debuerreotype image for a specific date and to download the code from software
heritage. We propose to leave this for the next reproducibility challenge in a decade or
so.

3 Execution and reproduction of results

3.1 Expectations
Following the information from theREADMEof each series of simulations (see Figure 4),
we could easily determine which scripts to run (sweep-parse.pl). It is interesting to
note that the logs of each simulation were stored in the archive (in log/) as well as the
parsing of these logs (in dat/).
Before trying to rerun all this, we ensured a specific parameter combination could be
run to manually check whether outputs are matching or not. Here was the target:

head -4 simutools09/instructions/01-onelink/dat/raw.data

Bandwidth Latency Size Model Time
1 1.000000e+05 0.00001 1000 CM02 0.010010
2 1.000000e+05 0.00001 1000 GTNets 0.013140
3 1.000000e+05 0.00001 1000 LegrandVelho 0.010974

And here was the output we should get from running gtnets.

head -46 simutools09/instructions/01-onelink/log/trace-file-1-1.log

>==<
========> Bandwidth (B) : 1.000000e+05 B/s (Bytes per second)
========> Latency (L) : 0.00001 s (seconds)
========> Size (S) : 1000 B (Bytes)
========> Model (M) : CM02
[0.000000] [simix_kernel/INFO] setting 'workstation_model' to 'compound'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'cpu_model' to 'Cas01'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'network_model' to 'CM02'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[S1:master:(1) 0.010010] [msg_test/INFO] Send completed (to C1). Transfer time: 0.010010

Agregate bandwidth: 99900.099900
[S1:master:(1) 0.010010] [msg_test/INFO] Completed peer: C1 time: 0.010010
[C1:slave:(2) 0.010010] [msg_test/INFO] ===> Estimated Bw of FLOW[1] : 99900.099900 ;

message from S1 to C1 with remaining : 0.000000
=========================><=========================
>==<
========> Bandwidth (B) : 1.000000e+05 B/s (Bytes per second)
========> Latency (L) : 0.00001 s (seconds)
========> Size (S) : 1000 B (Bytes)
========> Model (M) : GTNets
[0.000000] [simix_kernel/INFO] setting 'workstation_model' to 'compound'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'cpu_model' to 'Cas01'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'network_model' to 'GTNets'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[S1:master:(1) 0.013140] [msg_test/INFO] Send completed (to C1). Transfer time: 0.013140

Agregate bandwidth: 76103.500761

ReScience C 6.1 (#20) – Legrand and Velho 2023 12

https://github.com/alegrand/reproducibility-challenge/tree/master/simutools09/simgrid3.3_gtnets/
https://github.com/alegrand/reproducibility-challenge/tree/master/simutools09/simgrid3.3_gtnets/
https://hub.docker.com/repository/docker/alegrand38/simgrid3_3_gtnets
https://www.softwareheritage.org/
https://www.softwareheritage.org/
https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

[S1:master:(1) 0.013140] [msg_test/INFO] Completed peer: C1 time: 0.013140
[C1:slave:(2) 0.013140] [msg_test/INFO] ===> Estimated Bw of FLOW[1] : 76103.500761 ;

message from S1 to C1 with remaining : 0.000000
=========================><=========================
>==<
========> Bandwidth (B) : 1.000000e+05 B/s (Bytes per second)
========> Latency (L) : 0.00001 s (seconds)
========> Size (S) : 1000 B (Bytes)
========> Model (M) : LegrandVelho
[0.000000] [simix_kernel/INFO] setting 'workstation_model' to 'compound'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'cpu_model' to 'Cas01'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'network_model' to 'LegrandVelho'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[S1:master:(1) 0.010974] [msg_test/INFO] Send completed (to C1). Transfer time: 0.010974

Agregate bandwidth: 91128.086469
[S1:master:(1) 0.010974] [msg_test/INFO] Completed peer: C1 time: 0.010974
[C1:slave:(2) 0.010974] [msg_test/INFO] ===> Estimated Bw of FLOW[1] : 91128.086469 ;

message from S1 to C1 with remaining : 0.000000
=========================><=========================

3.2 Running the simulation in the Docker image
As the reader may have noted, the Docker image we produced only contains the binary
code of the simulator but not the input/output files nor the perl script to run simula‐
tions, which are archived separately [13]. This is an intended separations of concerns
and we believe it is a good practice to keep images as lightweight as possible and easier
to maintain. We now describe how to rerun the simulation. We should first run the
docker container and directly create a directory inside it to host simulation inputs and
outputs:

docker run -ti alegrand38/simgrid3_3_gtnets
mkdir -p /root/simutools09/01-onelink # inside the container

Then the template XML input files should be copied within the container ($CONTAINER
corresponds to the container id of the container and is obtained either using docker ps
or by querying the hostname within the container).

docker cp simutools09/instructions/01-onelink/onelink-d-template.xml \
$CONTAINER:/root/simutools09/01-onelink

docker cp simutools09/instructions/01-onelink/onelink-p-template.xml \
$CONTAINER:/root/simutools09/01-onelink

It is then possible to substitute the target parameters in these XML files and to run the
simulation in the container:

cd /root/simutools09/01-onelink
sed -e s/bw/1.000000e+05/g -e s/lt/0.00001/g onelink-p-template.xml \

> /tmp/onelink-p.xml
sed -e s/size/1000/g onelink-d-template.xml > /tmp/onelink-d.xml
for model in CM02 GTNets LegrandVelho; do

echo ”>==<”
echo ”========> Model (M) : $model”
/root/simgrid-3.3/examples/msg/gtnets/gtnets \

/tmp/onelink-p.xml /tmp/onelink-d.xml \
--cfg=workstation_model:compound --cfg=cpu_model:Cas01 \
--cfg=network_model:$model;

done;

>==<
========> Model (M) : CM02
echo 'org_babel_sh_eoe'
echo 'org_babel_sh_eoe'
[0.000000] [simix_kernel/INFO] setting 'workstation_model' to 'compound'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'cpu_model' to 'Cas01'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'network_model' to 'CM02'
[0.000000] [xbt_cfg/INFO] type in variable = 2

ReScience C 6.1 (#20) – Legrand and Velho 2023 13

https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

[S1:master:(1) 0.010010] [msg_test/INFO] Send completed (to C1). Transfer time: 0.010010
Agregate bandwidth: 99900.099900

[S1:master:(1) 0.010010] [msg_test/INFO] Completed peer: C1 time: 0.010010
[C1:slave:(2) 0.010010] [msg_test/INFO] ===> Estimated Bw of FLOW[1] : 99900.099900 ;

message from S1 to C1 with remaining : 0.000000
>==<
========> Model (M) : GTNets
[0.000000] [simix_kernel/INFO] setting 'workstation_model' to 'compound'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'cpu_model' to 'Cas01'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'network_model' to 'GTNets'
[0.000000] [xbt_cfg/INFO] type in variable = 2
<<<<<================================>>>>>
Dumping GTNETS topollogy information
== LINKID: 0

[SRC] ID: 0, router?: 0, hosts[]: [0]
[DST] ID: 1, router?: 0, hosts[]: [1]

>>>>>================================<<<<<
[S1:master:(1) 0.013140] [msg_test/INFO] Send completed (to C1). Transfer time: 0.013140

Agregate bandwidth: 76103.500761
[S1:master:(1) 0.013140] [msg_test/INFO] Completed peer: C1 time: 0.013140
[C1:slave:(2) 0.013140] [msg_test/INFO] ===> Estimated Bw of FLOW[1] : 76103.500761 ;

message from S1 to C1 with remaining : 0.000000
>==<
========> Model (M) : LegrandVelho
[0.000000] [simix_kernel/INFO] setting 'workstation_model' to 'compound'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'cpu_model' to 'Cas01'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'network_model' to 'LegrandVelho'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[S1:master:(1) 0.010974] [msg_test/INFO] Send completed (to C1). Transfer time: 0.010974

Agregate bandwidth: 91128.086469
[S1:master:(1) 0.010974] [msg_test/INFO] Completed peer: C1 time: 0.010974
[C1:slave:(2) 0.010974] [msg_test/INFO] ===> Estimated Bw of FLOW[1] : 91128.086469 ;

message from S1 to C1 with remaining : 0.000000

We could thus recover exactly the expected values which are reported on page 12.

3.3 Replicating the first series of simulations
Using the perl script should thus allow to re‐execute the simulation. It comprises hard‐
coded absolute paths and a quick minor modification had thus to be made. Here is how
to proceed:

• Within the container, we first create the directories that will host the simulation
results:
mkdir -p /root/simutools09/01-onelink/bin
mkdir -p /root/simutools09/01-onelink/dat
mkdir -p /root/simutools09/01-onelink/log
mkdir -p /root/simutools09/01-onelink/tmp

• Then outside the container, we copy the template input files and simulation perl
script:

docker cp simutools09/instructions/01-onelink/onelink-d-template.xml \
$CONTAINER:/root/simutools09/01-onelink

docker cp simutools09/instructions/01-onelink/onelink-p-template.xml \
$CONTAINER:/root/simutools09/01-onelink

docker cp simutools09/instructions/01-onelink/bin/sweep-parse.pl \
$CONTAINER:/root/simutools09/01-onelink/bin/sweep-parse.pl

• And finally back inside the container, we fix the absolute paths before running the
simulations:

old=”/home/velho/Development/projet-simgrid/simgrid/examples/msg/gtnets”
new=”/root/simgrid-3.3/examples/msg/gtnets”
sed -i ”s|$old|$new|g” /root/simutools09/01-onelink/bin/sweep-parse.pl
cd /root/simutools09/01-onelink/
./bin/sweep-parse.pl sweep 1 1

ReScience C 6.1 (#20) – Legrand and Velho 2023 14

https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

Bandiwthd array size is : 43
Changing working directory to /root/simgrid-3.3/examples/msg/gtnets
===<
Bandwidth (B) : 1.000000e+05 B/s (Bytes per second)
Latency (L) : 0.00001 s (seconds)
Size (S) : 1000 B (Bytes)
...

Thisworked like a charm! Unfortunately, according to the script, there are 16×37×165×
3 = 293040 (latency, bw, size, model) combinations, which, after a quick estimation,
should run for 10 hours solely for the first series of experiments. Sowe decided to reduce
the parameter combination to a smaller subset (only 7920 combinations, which took
about 17 minutes). We checked that the parsing works and that the results matched the
original ones, which was the case for all but 1 out of the 7920 simulation which failed
with the following message2:

>==<
========> Bandwidth (B) : 1.000000e+05 B/s (Bytes per second)
========> Latency (L) : 0.50000 s (seconds)
========> Size (S) : 17000 B (Bytes)
========> Model (M) : GTNets
[0.000000] [simix_kernel/INFO] setting 'workstation_model' to 'compound'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'cpu_model' to 'Cas01'
[0.000000] [xbt_cfg/INFO] type in variable = 2
[0.000000] [simix_kernel/INFO] setting 'network_model' to 'GTNets'
[0.000000] [xbt_cfg/INFO] type in variable = 2
<<<<<================================>>>>>
Dumping GTNETS topollogy information
== LINKID: 0

[SRC] ID: 0, router?: 0, hosts[]: [0]
[DST] ID: 1, router?: 0, hosts[]: [1]

>>>>>================================<<<<<
[0.000000] [simix_kernel/INFO] Oops ! Deadlock or code not perfectly clean.
[0.000000] [simix_kernel/INFO] 2 processes are still running, waiting for something.
[0.000000] [simix_kernel/INFO] Legend of the listing: ”<process> on <host>: <status>.”
[0.000000] [simix_kernel/INFO] master on S1: Blocked on condition 0xdead;

Waiting for the following actions: 'sleep'(0xdead) 'Task_0'(0xdead) 'sleep'(0xdead).
[0.000000] [simix_kernel/INFO] slave on C1: Blocked on condition 0xdead;

Waiting for the following actions: 'sleep'(0xdead) 'Task_0'(0xdead) 'sleep'(0xdead).
[0.000000] [simix_kernel/INFO] Return a Warning.

This is all the more surprising as the logs of the original article report a successful sim‐
ulation and a sound value for the effective bandwidth. We investigated the possible
reasons for this failure but this remained quite mysterious (in particular using a slightly
smaller or larger message size results in sound and successful simulations) and unex‐
plained (even after activating all debug logs, trying to follow the code through gdb and
attaching to forks of GTNets). This casts a doubt on the fact that we were able to rerun
the exact same code as the one used for the original submission but since all other sim‐
ulations matched and fixing an old unmaintained prototype code for corner cases was
not our objective, we decided to proceed with the rest of the simulations.

3.4 Running the analysis of the first series of experiments.
The analysis depends onmasterR script (simutools09/instructions/01-onelink/analyze.R)
which invokes perl and gnuplot. This is ugly but all pretty standard so we decided there
was no need to rebuild a dedicated analysis environment and that it should run directly
on our machine. To avoid messing up with the content of the original data, we decided
to work in the /tmp of our machine as follows:

mkdir -p /tmp/simutools09/01-onelink/dat/
mkdir -p /tmp/simutools09/01-onelink/log/
mkdir -p /tmp/simutools09/01-onelink/tmp/
mkdir -p /tmp/simutools09/01-onelink/bin/

2Many thanks to Remy Grünblatt, the Rescience reviewer, for pointing it out.

ReScience C 6.1 (#20) – Legrand and Velho 2023 15

https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

docker cp $CONTAINER:/root/simutools09/01-onelink/dat/raw.data \
/tmp/simutools09/01-onelink/dat/

cp simutools09/instructions/01-onelink/analyze.R /tmp/simutools09/01-onelink/
cp simutools09/instructions/01-onelink/bin/* /tmp/simutools09/01-onelink/bin/

source(”analyze.R”);

Latency (SECONDS) Size (BYTES) Time (SECONDS)
Relax this may take some time
...
...
...
..
Cadidates are X=0.934752791154703 and Y=10.6510810055123
The min is approximatelly: 0.0466609377572045
[1] ”Hello!!!”
-Inf & NaN & NA \\
-Inf & NaN & NA \\
-Inf & NaN & NA \\
-Inf & NaN & NA \\
-Inf & NaN & NA \\
-Inf & NaN & NA \\
9.524 87.72 490.2 905.8 989.7 999 999.9-Inf & NaN & NA \\
-Inf & NaN & NA \\
-Inf & NaN & NA \\
-Inf & NaN & NA \\
”./tmp/gnuplotError.script” line 4: undefined variable: Inf

”./tmp/gnuplotError.script” line 4: undefined variable: Inf

There were 15 warnings (use warnings() to see them)

When running, a gnuplot windowwith a 3D graph popped up. There are errormessages
but the ”Cadidates are X=0.934752791154703 and Y=10.6510810055123” message
was really nice as these are the latency and bandwidth modifiers obtained through a
custom linear regression and this is very familiar. The original paper reports .92 and
10.4 (page 5). The warnings and the differences come from the fact that the regression
we just run was done using a smaller set of simulations because we didn’t want to waste
our time rerunning all the simulations.

4 Conclusion and take-away messages

Although we only replicated a fraction of the simulations conducted in the original ar‐
ticle, they all perfectly match and we are confident that all the results would be repro‐
duced with a few additional hours of efforts and enough time to run all the simulations
(several days actually). This is of little interest as GTNetS has been replaced in earlier
versions of SimGrid by an other packet level simulator: NS3.
We have shown in this article how to use modern tools such as the Docker Hub, the
Debian snapshot archive, the Debuerreotype, GitHub, and Software Heritage. We have
tried to demonstrate best practices and to highlight their effectiveness or potential short‐
comings. Although they all require a relatively high level of operating system under‐
standing and expertise, we believe they are all nowmature enough and sufficiently easy
to use both for such kind of computer ”archaeology” and for a daily usage in a research
context (, which greatly eases the task of anyone trying to reuse or reproduce the work).
A sound question to ask is: ”Would anyone other than the original authors have suc‐
ceeded in reproducing this work?”. A fair answer is probably no.

• First, three different archives were needed: the first one was easy to find, the sec‐
ond one was publicly available but deeply hidden so it is unlikely anyone else than
the original authors would have found it, and although the third onewas also avail‐
able on the Internet, it was not very visible andwe initially recovered from thehard
drive of one of the two original authors.

ReScience C 6.1 (#20) – Legrand and Velho 2023 16

http://www.nsnam.org
https://hub.docker.com/
https://snapshot.debian.org/
https://github.com/debuerreotype/debuerreotype
http://github.com/
https://www.softwareheritage.org/
https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

• Second, even after gathering the three archives, rebuilding the software environ‐
ment, correctly linking and running the simulationwas possible but required such
a good amount of faith that we believe anyone else than the original authors would
have easily given up.

At the time of writing of the original article, Pedro Velho had put a significant effort in
documenting the whole workflow and relying on standard tools such as R, perl, and
make to automate as much work as possible. Yet, we made the three following mistakes
from a reproducibility perspective:

1. We never reached the point where a full automation was done and delegated to a
third party. In particular as we had no satisfying nor standard tool to distribute
the workload on a cluster. So we kept track of simulation outputs and interme‐
diate results manually. This good organization has been a life saver when trying
to reproduce and check the results. If we had to redo such work today, we would
probably use something like snakemake and org-mode notebooks to easily auto‐
mate and document the whole work.

2. We underestimated the URL rot effect. Although all our work was version con‐
trolled, moving from a development platform to an other made information and
archive retrieval more difficult than we anticipate. Although all the archives were
finally available, it took us an inordinate amount of time to locate them.. Cleaning
up is rarely done after publishing, hence the need to do it on the fly. It turns out
that Pedro Velho had taken care to clean and to make all the data he had produced
during his PhD thesis available on his webpage. The policy in our lab is to main‐
tain the webpage of former members so all the data is still available but not easily
found. Using a perennial archive such as Zenodo is the recommended way to pro‐
ceed nowadays but this archive did not exist by then. Note that a fewmonths after
having completed our replication, we learned that the gforge.inria.frwould be
shut down3 by the end December 2020 and that DockerHub was activating a new
container image retention policy for inactive images4 which will be enforced start‐
ingNovember 1, 2020. Wehave therefore duplicated all our archives tomore stable
archives (Zenodo) and modified our recipes accordingly. We have also archived
the org-mode file behind this article next to the datasets and instructions [13].

3. Finally, we underestimated the importance of capturing every information on soft‐
ware environment. A few ones related to processor architecture and compilers
were available but it was lacunar. Fortunately, we only relied on standard open
source software and from the dates, it was not too hard to identify which software
must have been used and we have been able to rebuild a functional software envi‐
ronment at low cost, solely from binary packages. Controlling this environment
and making it easily available and usable is definitely the way to go with tools like
Docker but this lightweight virtualization was not as easy to use back then.

Overall this reproducibility challenge was an excellent experience to face the effect of
time even on a relatively short (10 years) time period. It was also very positive to re‐
alize that over the last decade, several very good tools and practices have emerged to
address exactly the difficulties we faced back then (workflows and notebooks to handle
computations, software and data archives to fight against link rot, container and stable
packaging systems to manage software environments).

3https://gforge.inria.fr/forum/forum.php?forum_id=11543
4Any images has not been either pushed or pulled from the Docker Hub in 6 or more months will be sched‐

uled for deletion.

ReScience C 6.1 (#20) – Legrand and Velho 2023 17

https://snakemake.readthedocs.io/
http://orgmode.org/
https://en.wikipedia.org/wiki/Link_rot
http://mescal.imag.fr/membres/pedro.velho/publications.html
http://zenodo.org/
https://hub.docker.com/repository/docker/alegrand38/simgrid3_3_gtnets
https://hub.docker.com/
https://gforge.inria.fr/forum/forum.php?forum_id=11543
https://rescience.github.io/

[Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

References

1. P. Velho and A. Legrand. “Accuracy Study and Improvement of Network Simulation in the SimGrid Framework.”
In: SIMUTools’09, 2nd International Conference on Simulation Tools and Techniques. Rome, Italy, Mar. 2009.
URL: https://hal.inria.fr/inria-00361031.

2. K. Fujiwara and H. Casanova. “Speed and Accuracy of Network Simulation in the SimGrid Framework.” In: Intl.
Conf. on Performance Evaluation Methodologies and Tools. Nantes, France, 2007, 12:1–12:10.

3. S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai. “Towards Yet Another Peer-to-Peer Simulator.” In: Proc.
Fourth International Working Conference Performance Modelling and Evaluation of Heterogeneous Net-
works (HET-NETs ’06). Sept. 2006.

4. H. Casanova and L. Marchal. A Network Model for Simulation of Grid Application. Tech. rep. 2002-40. LIP,
Oct. 2002.

5. L. Massoulié and J. Roberts. “Bandwidth Sharing: Objectives and Algorithms.” In: INFOCOM. 1999, pp. 1395–
1403.

6. G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti. “TCP Libra: Exploring RTT-Fairness for
TCP.” In: NETWORKING 2007. Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet.
Ed. by I. F. Akyildiz, R. Sivakumar, E. Ekici, J. C. d. Oliveira, and J. McNair. Vol. 4479. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007, pp. 1005–1013.

7. P. Velho, L. Schnorr, H. Casanova, and A. Legrand. “On the Validity of Flow-level TCP Network Models for Grid
and Cloud Simulations.” In: ACM Transactions on Modeling and Computer Simulation 23.4 (Oct. 2013). URL:
https://hal.inria.fr/hal-00872476.

8. P. A. Madeira de Campos Velho. “Accurate and Fast Simulations of Large-Scale Distributed Computing Sys-
tems.” Theses. Université Grenoble Alpes, July 2011. URL: https://tel.archives-ouvertes.fr/tel-00625497.

9. G. F. Riley. “The Georgia Tech Network Simulator.” In: ACM SIGCOMM workshop on Models, Methods and
Tools for Reproducible Network Research. Karlsruhe, Germany, 2003, pp. 5–12.

10. A.Medina, A. Lakhina, I. Matta, and J. Byers.BRITE: Universal TopologyGeneration fromaUser’s Perspective.
Available at https://www.cs.bu.edu/brite/publications/usermanual.pdf. Apr. 2001.

11. B. M. Waxman. “Routing of Multipoint Connections.” In: IEEE Journal on Selected Areas in Communications
6.9 (Dec. 1988), pp. 1617–1622.

12. [SWRel.] A. Legrand andM.Quinson,SimGrid version 3.3, Apr. 2009. DOI: https://doi.org/10.5281/zenodo.5752352.
13. A. Legrand andP. Velho.Accuracy Study and Improvement of Network Simulation in the SimGrid Framework

(datasets). Zenodo. Nov. 2008. DOI: https://doi.org/10.5281/zenodo.5760337.
14. [SWRel.] G. F. Riley and P. A. Velho,GTNetS and patches to apply for compatibility with SimGrid version unde-

fined, Apr. 2008. SWHID: ⟨swh:1:dir:2737fd9d2bd0856bf1e024922032163364d04543;origin=svn://scm.gforge.inria.fr/svn/simgrid/contrib/trunk/GTNetS/⟩.

ReScience C 6.1 (#20) – Legrand and Velho 2023 18

https://hal.inria.fr/inria-00361031
https://hal.inria.fr/hal-00872476
https://tel.archives-ouvertes.fr/tel-00625497
https://www.cs.bu.edu/brite/publications/usermanual.pdf
https://oadoi.org/https://doi.org/10.5281/zenodo.5752352
https://oadoi.org/https://doi.org/10.5281/zenodo.5760337
http://archive.softwareheritage.org/swh:1:dir:2737fd9d2bd0856bf1e024922032163364d04543;origin=svn://scm.gforge.inria.fr/svn/simgrid/contrib/trunk/GTNetS/
https://rescience.github.io/

	Historical Context
	Scientific context
	Computational context

	Rebuilding the code and its environment
	Original source code and retrieval of the software
	Instructions

	Rebuilding the software environment

	Execution and reproduction of results
	Expectations
	Running the simulation in the Docker image
	Replicating the first series of simulations
	Running the analysis of the first series of experiments.

	Conclusion and take-away messages

